Please wait a minute...
材料导报  2025, Vol. 39 Issue (13): 24080081-10    https://doi.org/10.11896/cldb.24080081
  无机非金属及其复合材料 |
高性能水性环氧涂层及涂层钢筋应用研究进展
管焓宇1, 张登宇2, 欧阳金平2, 张伟强1, 刘志勇1,*
1 烟台大学土木工程学院,山东 烟台 264000
2 中交一公局集团有限公司,山东 烟台 264000
Research Progress in Application of High Performance Waterborne Epoxy Coating and Coated Steel Bar
GUAN Hanyu1, ZHANG Dengyu2, OUYANG Jinping2, ZHANG Weiqiang1, LIU Zhiyong1,*
1 School of Civil Engineering, Yantai University, Yantai 264000, Shandong, China
2 China First Highway Engineering Company Ltd, Yantai 264000, Shandong, China
下载:  全 文 ( PDF ) ( 57858KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氯盐环境下混凝土结构中的钢筋易被腐蚀,钢筋腐蚀后不仅导致混凝土结构服役寿命缩短,威胁结构安全,甚至造成巨大经济损失。环氧涂层被认为是防止钢筋锈蚀和提高混凝土结构耐久性的有效方法之一,本文针对目前环氧涂层特点及环氧涂层钢筋现状,结合本研究团队近年来研究工作,探讨了国内外水性环氧涂层制备技术;分析了柔性纳米粒子与刚性纳米微材对水性环氧涂层物理力学性能和耐腐蚀性能的影响及其协同增韧机理;探讨了应用改性聚氨酯对水性环氧自修复性能的影响及其调控机理;分析了应用硅烷偶联剂改善水性环氧底涂与钢材粘结性能,引入石墨烯聚苯胺提高中涂耐腐蚀性能,以及适度增加填料颗粒度改善面涂粗糙度及涂层钢筋与混凝土粘结锚固性能的作用机制;阐述了深入开展多功能、多尺度、多层级水性环氧涂层钢筋防护的必要性。结合标准编制工作介绍了水性环氧涂层钢筋研究进展及性能指标,最后简要介绍了水性涂层钢筋应用研究概况。本文对应用水性环氧涂层钢筋提升复杂环境下混凝土结构的耐久性具有理论意义和工程价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
管焓宇
张登宇
欧阳金平
张伟强
刘志勇
关键词:  水性环氧涂层钢筋  氯盐环境  钢筋混凝土  耐久性提升    
Abstract: Steel bars in concrete constructions are easily corroded in a chloride environment. Corrosion of steel bars not only reduces the service life of concrete structures, but also threatens the safety of structures and even results in significant economic losses. Epoxy coating is considered to be one of the effective methods to prevent corrosion of steel bars and improve the durability of concrete structures. In view of the characteristics and present situation of epoxy coatings and coated steel bars, combined with the work of our research team, here discusses the preparation technology of waterborne epoxy coatings at home and abroad, analyzes the effects of flexible nanoparticles and rigid nano-materials on the physical and mechanical properties and corrosion resistance of waterborne epoxy coatings and their synergistic toughening mechanism, discusses the effect of modified polyurethane on the self-healing properties of waterborne epoxy and its regulation mechanism. In addition, analyzes the mechanism of many methods to improve coating abilities such as using silane coupling agent to improve the bonding performance between waterborne epoxy primer and steel, adding graphene polyaniline to improve the corrosion resistance of intermediate coating, and moderately increasing fillers to improve the roughness of surface coating and the bonding and anchoring performance between coated steel bar and concrete. The necessity and importance of carrying out research on multi-functional, multi-scale and multi-level waterborne epoxy coated steel bars are further elaborated. At the same time, introduces the research progress and performance indicators of waterborne epoxy coated steel bars in combination with the standard. Finally, briefly introduces the engineering application of waterborne coated steel bars. It is of great significance and engineering value to apply waterborne epoxy coated steel bars to improve the durability of concrete structures in complex environments.
Key words:  waterborne epoxy coated steel bar    chloride environment    reinforced concrete    improvement of durability
出版日期:  2025-07-10      发布日期:  2025-07-21
ZTFLH:  TQ323.5  
基金资助: 山东省自然科学基金重点项目(ZR2020KE049);烟台大学研究生创新基金(KGIFYTU2416)
通讯作者:  *刘志勇,博士,教授,主要研究方向:混凝土材料与结构的耐久性及耐久性提升技术、钢筋混凝土的腐蚀防护与修复技术的研究与开发。Lzy1698@163.com   
作者简介:  管焓宇,建筑与土木工程硕士研究生,从事混凝土结构耐久性提升技术研究。
引用本文:    
管焓宇, 张登宇, 欧阳金平, 张伟强, 刘志勇. 高性能水性环氧涂层及涂层钢筋应用研究进展[J]. 材料导报, 2025, 39(13): 24080081-10.
GUAN Hanyu, ZHANG Dengyu, OUYANG Jinping, ZHANG Weiqiang, LIU Zhiyong. Research Progress in Application of High Performance Waterborne Epoxy Coating and Coated Steel Bar. Materials Reports, 2025, 39(13): 24080081-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080081  或          https://www.mater-rep.com/CN/Y2025/V39/I13/24080081
1 Xu Z, Zhang J, Zhang J, et al. Construction and Building Materials, 2024, 441, 137590.
2 Liu Z Y. Migration corrosion inhibitor preparation, performance and its application in durability improvement for reinforced concrete structure, Chemical Industry Press, China, 2017, pp. 191 (in Chinese).
刘志勇. 迁移性阻锈剂制备性能及在混凝土结构耐久性提升中应用, 化学工业出版社, 2017, pp. 191.
3 Chen Y, Hu X, Wu Z M, et al. Materials Reports, 2023, 37(18), 79 (in Chinese).
陈阳, 胡翔, 吴泽媚, 等. 材料导报, 2023, 37(18), 79.
4 Hsissou R. Journal of Molecular Liquids, 2021, 336, 116307.
5 Al-Negheimish A, Hussain R R, Alhozaimy A, et al. Construction and Building Materials, 2021, 274, 121921.
6 Bao Y, Gawne D T, Gao J, et al. Surface and Coatings Technology, 2013, 232, 150.
7 Zhang R, Wang H, Wang X, et al. Polymers, 2023, 15(1), 195.
8 Li X, Wang Q, Cui X, et al. Polymers, 2022, 14(17), 3618.
9 Ai D, Mo R, Wang H, et al. Progress in Organic Coatings, 2019, 136, 105258.
10 Yuan M, Zhu B, Cai X. Journal of Applied Polymer Science, 2017, 134(17), 44757.
11 Chen X, Li X, Yang K, et al. e-Polymers, 2020, 20(1), 636.
12 Tan Y, Shao Z B, Chen X F, et al. ACS Appl Mater Interfaces, 2015, 7(32), 17919.
13 Qin J, Zhang G, Sun R, et al. Journal of Thermal Analysis and Calorimetry, 2014, 117(2), 831.
14 He L, Liu L, Cao C, et al. Journal of Adhesion Science and Technology, 2022, 36(5), 490.
15 Pi Z, Deng C, Pan H, et al. Polymers, 2023, 15(7), 1673.
16 Yan H, Cai M, Li W, et al. Journal of Materials Science & Technology, 2020, 54, 144.
17 Wei B, Zhou J T, Yao Z J, et al. Materials Reports, 2019, 33(17), 2976 (in Chinese).
魏波, 周金堂, 姚正军, 等. 材料导报, 2019, 33(17), 2976.
18 Chen Y, Liu Z Y, Guan H Y, et al. Materials Reports, 2021, 35(13), 13205 (in Chinese).
陈阳, 刘志勇, 管焓宇, 等. 材料导报, 2021, 35(13), 13205.
19 Wu T, Guo F, Hu J, et al. Composites Communications, 2022, 35, 101278.
20 Guo F, Wu T, Yang Z, et al. Composites Communications, 2022, 36, 101368.
21 Qu C, Wu T, Huang G, et al. Composites Part B:Engineering, 2021, 210, 108569.
22 Wu M T, Xu C S, Xing J W, et al. Dyeing and Finishing, 2019, 45(12), 51 (in Chinese).
吴梦婷, 徐成书, 邢建伟, 等. 印染, 2019, 45(12), 51.
23 Wang Y L, Hou L J, Liu Z Y, et al. Materials Reports, 2019, 33(14), 2456 (in Chinese).
王玉龙, 侯立杰, 刘志勇, 等. 材料导报, 2019, 33(14), 2456.
24 Jia L, Qi P, Shi K, et al. Composites Science and Technology, 2019, 184, 107865.
25 Zhang J, Huang H, Ma J, et al. Frontiers in Materials, 2019, 6, 185.
26 Shundo A, Yamamoto S, Tanaka K. JACS Au, 2022, 2(7), 1522.
27 Zhang K, Huang C, Fang Q, et al. Journal of Applied Polymer Science, 2017, 134(6), 44246.
28 Yin H, Wan Y, Zhou J, et al. Pigment & Resin Technology, 2019, 48(3), 223.
29 Chen M, Sun D C. Thermosetting Resin, 2013, 28(3), 6 (in Chinese).
陈铭, 孙东成. 热固性树脂, 2013, 28(3), 6.
30 Liu X F, Wang R W, Wei M. Paint & Coatings Industry, 2017, 47(5), 44 (in Chinese).
刘晓芳, 王荣威, 魏铭, 等. 涂料工业, 2017, 47(5), 44.
31 Liu X L, Xie L P, Zhang P, et al. Engineering Plastics Application, 2021, 49(4), 109 (in Chinese).
刘晓龙, 谢利鹏, 张鹏, 等. 工程塑料应用, 2021, 49(4), 109.
32 Li J Y. Thermosetting Resin, 2019, 34(4), 1 (in Chinese).
李菁熠. 热固性树脂, 2019, 34(4), 1.
33 Huang X, Wang L, Lai Y, et al. Journal of Coatings Technology and Research, 2021, 18(2), 549.
34 Lou C, Liu X. Composites Part B:Engineering, 2018, 136, 20.
35 Yang H G, Yang J J, Wu Q Y, et al. Polymer Materials Science & Engineering, 2017, 33(10), 34 (in Chinese).
杨红光, 杨建军, 吴庆云, 等. 高分子材料科学与工程, 2017, 33(10), 34.
36 Ma H, Aravand M A, Falzon B G. Composites Science and Technology, 2021, 201, 108523.
37 Lu H J, Li Y F, Zhang D J, et al. Composites Science and Engineering, 2023, (8), 121 (in Chinese).
鹿海军, 李亚锋, 张杜鹃, 等. 复合材料科学与工程, 2023, (8), 121.
38 Mi X, Liang N, Xu H, et al. Progress in Materials Science, 2022, 130, 100977.
39 Domun N, Hadavinia H, Zhang T, et al. Nanoscale, 2015, 7(23), 10294.
40 Luo H, Ding J, Huang Z, et al. Composites Part B:Engineering, 2018, 155, 288.
41 Ai J, Cheng W, Wang P, et al. Journal of Applied Polymer Science, 2021, 138(18), 50331.
42 Liu X, Han X, Wang M, et al. Progress in Organic Coatings, 2024, 191, 108407.
43 Liu J Y, Zhang H L, Zuo X B. Acta Materiae Compositae Sinica, 2023, 40(9), 5046 (in Chinese).
刘嘉源, 张宏亮, 左晓宝, 等. 复合材料学报, 2023, 40(9), 5046.
44 Mu J, Gao F, Cui G, et al. Progress in Organic Coatings, 2021, 157, 106321.
45 Sun W, Yang Y, Yang Z, et al. Journal of Materials Science & Technology, 2021, 91, 278.
46 Duan W, Chen Y, Ma J, et al. Composites Part B:Engineering, 2020, 189, 107878.
47 Li J N, YU K J, QIAN K. Materials Reports, 2014, 28(20), 51 (in Chinese).
李佳铌, 俞科静, 钱坤, 等. 材料导报, 2014, 28(20), 51.
48 Chen X, Qu Z, Xie M, et al. Arabian Journal of Chemistry, 2024, 17(6), 105795.
49 Zhou T, Zhang J, Zhao J, et al. Surface and Coatings Technology, 2021, 412, 127043.
50 Gu H, Zhang H, Lin J, et al. Polymer, 2018, 143, 324.
51 Li J Y, Dai D Y, Qian C, et al. Journal of Chinese Society for Corrosion and Protection, 2022, 42(1), 156 (in Chinese).
李建永, 代殿宇, 钱程, 等. 中国腐蚀与防护学报, 2022, 42(1), 156
52 Zhang Q Q, Chen Y X, Liu R, et al. Acta Polymerica Sinica, 2023, 54(5), 720 (in Chinese).
张青青, 陈亚鑫, 刘仁, 等. 高分子学报, 2023, 54(5), 720.
53 Bi J Y, Li J S, Wang H J, et al. Electroplating & Finishing, 2022, 41(20), 1435 (in Chinese).
闭锦叶, 李建三, 王华洁, 等. 电镀与涂饰, 2022, 41(20), 1435.
54 Xiao S, Zhang Y J, Dou B J, et al. Materials Protection, 2022, 55(7), 74 (in Chinese).
肖帅, 张颖君, 窦宝捷, 等. 材料保护, 2022, 55(7), 74.
55 Su Y, Qiu S, Wei J, et al. Chemical Engineering Journal, 2021, 426, 131269.
56 Li F Y, Ju P F, Chen L, et al. Surface Technology, 2021, 50(11), 287 (in Chinese).
李凤英, 鞠鹏飞, 陈磊, 等. 表面技术, 2021, 50(11), 287.
57 Ma Y X, Song X H, Yu X, et al. Materials Reports, 2023, 37(24), 255 (in Chinese).
马衍轩, 宋晓辉, 于霞, 等. 材料导报, 2023, 37(24), 255.
58 Bera S, Rout T K, Udayabhanu G, et al. Progress in Organic Coatings, 2016, 101, 24.
59 Sun Z D, Yang Y N, Song Q S, et al. Electroplating & Finishing, 2019, 38(15), 802 (in Chinese).
孙振东, 杨颜宁, 宋秋实, 等. 电镀与涂饰, 2019, 38(15), 802.
60 Li B, Cao P F, Saito T, et al. Chemical Review, 2023, 123(2), 701.
61 Khan M Z, Zaib A, Khan A, et al. Journal of Materials Science Materials in Electronics, 2021, 32, 2765.
62 Adli A, Shelesh-Nezhad K, Khoshravan Azar M, et al. Plastics, Rubber and Composites, 2020, 49(2), 79.
63 Lee M W, An S, Kim Y, et al. Chemical Engineering Journal, 2018, 334, 1093.
64 Ratwani C R, Kamali A R, Abdelkader A M. Progress in Materials Science, 2023, 131, 101001.
65 Wang M, Gao H, Wang Z, et al. Polymer, 2022, 248, 124801.
66 Liu D, Fan C, Xiao Y, et al. Polymer, 2022, 263, 125513.
67 Han Y, Wu X, Zhang X, et al. ACS Applied Materials & Interfaces, 2017, 9(23), 20106.
68 Hu Z, Zhang D, Lu F, et al. Macromolecules, 2018, 51(14), 5294.
69 Li J, Shi H, Liu F, et al. Progress in Organic Coatings, 2021, 156, 106236.
70 Qiao C, Jian X, Gao Z, et al. Materials Advances, 2023, 4(7), 1711.
71 Ye J F, Wang F, Zhang J X, et al. Materials Reports, 2023, 37(14), 262 (in Chinese).
叶姣凤, 王飞, 张钧翔, 等. 材料导报, 2023, 37(14), 262.
72 Zhang Z, Jung D, Andrawes B. Construction and Building Materials, 2020, 262, 120762.
73 Li J, Chen P, Wang Y, et al. Progress in Organic Coatings, 2021, 158, 106388.
74 Nan D, Li X, Li D, et al. Polymers, 2023, 15(1), 27.
75 Li B, Yang H B, He J H, et al. Corrosion & Protection, 2023, 44(10), 6 (in Chinese).
李波, 杨慧斌, 何锦航, 等. 腐蚀与防护, 2023, 44(10), 6.
76 Fu C L. Study on performance optimization and application of waterborne epoxy resin. Master’s Thesis, Yantai University, China, 2023 (in Chinese).
付成林. 水性环氧树脂性能优化及应用研究. 硕士学位论文, 烟台大学, 2023.
77 China Engineering Construction Standardization Association. Waterborne epoxy coated steel reinforcing bars for concrete:T/CECS 10332-2023, Standards Press of China, China, 2023 (in Chinese).
中国工程建设标准化协会. 钢筋混凝土用水性环氧涂层钢筋:T/CECS 10332-2023, 中国标准出版社, 2023.
78 Sharma N, Sharma S, Sharma S K, et al. Construction and Building Materials, 2022, 322, 126495.
79 Wang J, Xiao F, Yang J. Construction and Building Materials, 2023, 385, 131426.
80 Haung Y J, Zhang Y J, Xiao J Z, et al. Journal of Building Structures, 2020, 41(S1), 390 (in Chinese).
黄一杰, 张宜健, 肖建庄, 等. 建筑结构学报, 2020, 41(S1), 390.
81 Zhang W B, Liu Z Y, Liu Q B, et al. Journal of Building Engineering, 2023, 76, 107328.
82 Kawasaki Y, Fukui S, Fukuyama T. Construction and Building Materials, 2022, 352, 128829.
83 Kamde D K, Pillai R G. Construction and Building Materials, 2021, 277, 122314.
84 Liu J M. Research on durability and life prediction of waterborne epoxy coated reinforced concrete under harsh environment. Master’s Thesis, Yantai University, China, 2023 (in Chinese).
刘佳敏. 严酷环境下水性环氧涂层钢筋混凝土的耐久性及寿命预测. 硕士学位论文, 烟台大学, 2023.
85 Qiao H, Zhu B, Feng Q, et al. Journal of Materials in Civil Engineering, 2018, 30(5), 4018071.
86 Wang K, Fang X, Fan Z H, et al. Corrosion and Protection, 2022, 43(12), 88 (in Chinese).
王康臣, 方翔, 范志宏, 等. 腐蚀与防护, 2022, 43(12), 88.
[1] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[2] 陈文龙, 周旭东, 张宇, 张云升, 马智聪. 电化学除氯对钢筋腐蚀状态及其周围混凝土微观结构的影响[J]. 材料导报, 2024, 38(23): 23070258-8.
[3] 金浏, 杨健, 吴洁琼, 杜修力. 考虑混凝土细观非均质性的钢筋混凝土结构疲劳寿命预测概率模型[J]. 材料导报, 2024, 38(20): 23090009-8.
[4] 徐宁, 杨恒, 熊传胜, 崔征, 蒋鹏, 刘璨. 钢筋混凝土环境中负载型阻锈剂的研究进展[J]. 材料导报, 2024, 38(2): 22050296-14.
[5] 魏广帅, 汪维, 杨建超, 高伟亮. POZD涂覆钢板加固钢筋混凝土板抗爆性能研究[J]. 材料导报, 2023, 37(21): 22030007-8.
[6] 褚召阳, 郭乃胜, 房辰泽, 谭忆秋, 尤占平. 氯盐环境下沥青与沥青混合料性能及劣化机理研究进展[J]. 材料导报, 2023, 37(15): 21110001-9.
[7] 孟祥晖, 冯琼, 张云升, 乔宏霞, 谢晓扬. 盐渍土环境下钢筋混凝土腐蚀劣化行为及竞争失效分析[J]. 材料导报, 2023, 37(14): 22010281-10.
[8] 商怀帅, 柴鑫. 往复荷载下锈蚀钢筋与混凝土粘结性能的试验研究[J]. 材料导报, 2023, 37(1): 21030106-6.
[9] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[10] 乔国斌, 乔宏霞, 路承功. 兰州地铁地下水环境中钢筋混凝土通电锈蚀机理研究[J]. 材料导报, 2022, 36(19): 21010008-6.
[11] 张成琳, 刘清风. 钢筋混凝土中氯盐和硫酸盐耦合侵蚀研究进展[J]. 材料导报, 2022, 36(1): 20100075-9.
[12] 鞠学莉, 吴林键, 刘明维, 张洪, 李婷婷. 考虑氯离子侵蚀维度的钢筋混凝土码头服役寿命预测[J]. 材料导报, 2021, 35(24): 24075-24080.
[13] 喻宣瑞, 姚国文, 范伟庆. 交变荷载和氯盐环境作用下钢绞线的腐蚀疲劳性能研究[J]. 材料导报, 2021, 35(20): 20087-20091.
[14] 路承功, 魏智强, 乔宏霞, 曹辉, 乔国斌. 盐渍土通电环境中钢筋混凝土损伤劣化及尺寸效应试验研究[J]. 材料导报, 2021, 35(16): 16042-16049.
[15] 杨燕, 谭康豪, 覃英宏. 混凝土内氯离子扩散影响因素的研究综述[J]. 材料导报, 2021, 35(13): 13109-13118.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed