Please wait a minute...
材料导报  2025, Vol. 39 Issue (13): 24080130-7    https://doi.org/10.11896/cldb.24080130
  金属与金属基复合材料 |
基于深度学习的钛合金电弧增材制造表面形貌缺陷分类识别与预测
马明, 郭鑫鑫, 魏正英*
西安交通大学精密微纳制造技术国家重点实验室,西安 710049
Classification and Prediction of Surface Defects in Titanium Alloy Wire Arc Additive Manufacturing(WAAM) Based on Deep Learning
MA Ming, GUO Xinxin, WEI Zhengying*
State Key Laboratory of Precision Micro Nano Manufacturing Technology, Xi’an Jiaotong University, Xi’an 710049, China
下载:  全 文 ( PDF ) ( 26434KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对钛合金电弧增材制造(WAAM)成形过程中的缺陷问题,分析成形中的咬边、孔洞、球化等形貌缺陷。首先探索试验中的工艺参数与缺陷的关联性,得到各个缺陷对应的工艺参数范围;再通过深度学习来诊断钛合金电弧增材制造成形过程中的缺陷,对咬边、孔洞、球化等形貌缺陷进行分类识别和预测。通过搜索法获取一定范围内的训练最佳超参数,对比四种不同的新型卷积神经网络架构(CNN)的分类性能,利用图像增强对成形过程的4 404张缺陷图像进行分类识别训练;发现ConvNeXtV2模型分类准确率达99.06%,且训练时间与训练参数最少,综合表现性能最好,图片识别预测时间为4.03 ms,表明其能够用于后续的反馈控制,以达到提高钛合金电弧增材制造成形质量的目标。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马明
郭鑫鑫
魏正英
关键词:  钛合金  电弧增材制造  卷积神经网络  形貌缺陷预测    
Abstract: Focused on the defect problems in the forming process of titanium alloy wire arc additive manufacturing (WAAM), This work analyzed the morphology defects such as undercutting, holes, and spheroidization during forming. Firstly, explored the correlation between process parameters and defects in the experiment, obtained the range of process parameters corresponding to each defect, and then deep learning was used to diagnose defects in the forming process of titanium alloy wire arc additive manufacturing. Morphological defects such as undercutting, hole, and spheroidization was classified, identified, and predicted. The search method was used to obtain the best training hyperparameters within a certain range, and the classification performance of four different novel convolutional neural network architectures (CNN) was compared. Image enhancement was used to classify and recognize 4 404 defect images in the forming process for training. The results show that ConvNeXtV2 model has a classification accuracy of 99.06%, with the least training time and parameters, and the best overall performance, the image recognition prediction time is 4.03 ms. It can be used for subsequent feedback control to improve the forming quality of titanium alloy wire arc additive manufacturing.
Key words:  titanium alloy    wire arc additive manufacturing    convolutional neural network    morphological defects
出版日期:  2025-07-10      发布日期:  2025-07-21
ZTFLH:  TG444  
基金资助: 陕西省重点研发计划项目资助(2023-YBGY-109)
通讯作者:  *魏正英,西安交通大学机械工程学院学院教授、博士研究生导师。目前主要从事3D打印增材制造技术、基于人工智能深度学习技术进行灌溉施肥智能决测和精准控制技术研究、智能3D打印技术等方面的研究工作。zywei@mail.xjtu.edu.cn   
作者简介:  马明,现为西安交通大学机械工程学院学院硕士研究生,在魏正英教授的指导下进行研究。目前主要研究领域为金属电弧增材制造。
引用本文:    
马明, 郭鑫鑫, 魏正英. 基于深度学习的钛合金电弧增材制造表面形貌缺陷分类识别与预测[J]. 材料导报, 2025, 39(13): 24080130-7.
MA Ming, GUO Xinxin, WEI Zhengying. Classification and Prediction of Surface Defects in Titanium Alloy Wire Arc Additive Manufacturing(WAAM) Based on Deep Learning. Materials Reports, 2025, 39(13): 24080130-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080130  或          https://www.mater-rep.com/CN/Y2025/V39/I13/24080130
1 Guo L, He W X, Zhou P, et al.Hot Working Technology, 2020, 49(22), 22(in Chinese).
郭鲤, 何伟霞, 周鹏, 等. 热加工工艺, 2020, 49(22), 22.
2 Feng S R, Ming Z, Bo G S, et al.Ordnance Material Science and Engineering, 2023, 46(4), 101 (in Chinese).
丰生荣, 明珠, 柏关顺, 等. 兵器材料科学与工程, 2023, 46(4), 101.
3 Huang J K, Wu H S, Yu X Q, et al. State of the arc for titanium alloy wire arc additive manufacturing process and microstructure control.Materials Reports, 2023, 37(14), 101(in Chinese).
黄健康, 吴昊盛, 于晓全, 等. 材料导报, 2023, 37(14), 101.
4 Wu S S, Guo C, Liu W M.Modern Manufacturing Technology and Equipment, 2021, 57(3), 204(in Chinese).
吴随松, 郭纯, 刘武猛. 现代制造技术与装备, 2021, 57(3), 204.
5 Ma X, Xiang Z, Li T, et al.International Journal of Minerals, Metallurgy and Materials, 2022, 29(8), 1596.
6 Xiong J T, Geng H B, Lin X, et al.Aerospace Manufacturing Technology, 2015(Z2), 80(in Chinese).
熊江涛, 耿海滨, 林鑫, 等. 航空制造技术, 2015(Z2), 80.
7 Xiao X C, Xin S, Zi R Z, et al.Advances in Materials Science and Engineering, DOI:10.1155/2022/5757484.
8 Akter N S, Song G S.Virtual and Physical Prototyping, DOI:10.1080/17452759.2023.2210553
9 Xia C Y, Pan Z X, Li Y X, et al.The International Journal of Advanced Manufacturing Technology, 2022, 120(1-2), 1.
10 Barua S, Liou F, Newkirk J, et al.Rapid Prototyping Journal, 2014, 20(1), 77.
11 Shen H Y, Du W Z, Sun W J, et al.Applied Sciences, DOI:10.3390/app10010235.
12 Wu J, Huang C, Li Z L, et al.Rapid Prototyping Journal, 2023, 29(5), 910.
13 Li R, Jin M Z, Paquit Vincent C.Materials Design, DOI:10.1016/J.MATDES.2021.109726.
14 Feng Y N. Design andimplementation of surface defect detection system based on wire arc additive manufacturing point cloud. Master’s Thesis, Huazhong University of Science and Technology, China, 2022 (in Chinese).
冯亚宁. 基于电弧增材制造点云的表面缺陷检测系统设计与实现. 硕士学位论文, 华中科技大学, 2022.
15 Gong F J. Study on infrared visual intelligent diagnosis system for defects in CMT additive manufacturing process. Master’s Thesis, Huazhong University of Science and Technology, China, 2020 (in Chinese).
龚福建. CMT增材制造过程缺陷红外视觉智能诊断系统研究. 硕士学位论文, 华中科技大学, 2020.
16 Wan C Z. Research on on-line monitoring of arc welding additive manufacturing system based on multi-sensing. Master’s Thesis, Huazhong University of Science and Technology, China, 2018 (in Chinese).
万柴志. 基于多传感复合的电弧增材制造在线监测系统研究. 硕士学位论文, 华中科技大学, 2018.
17 Ma Chen. Research on Recognition of Morphology Defects and Process Control in TIG-assisted Droplet Deposition Based on Deep Learning. Master’s Tthesis, Xi’an Jiaotong University, China, 2021 (in Chinese).
马琛. 基于深度学习的熔滴复合TIG电弧沉积形貌缺陷识别与工艺控制研究. 硕士学位论文, 西安交通大学, 2021.
18 You X, Cai Y J, Lin Y, et al.Journal of Xiamen University of Technology, 2023, 31(5), 32(in Chinese).
尤鑫, 蔡艺军, 林云, 等. 厦门理工学院学报, 2023, 31(5), 32.
19 Ma Z W, Yuan Y P, Fan P P, et al.Machinery Design and Manufacture, 2023(1), 5(in Chinese).
马占伟, 袁逸萍, 樊盼盼, 等. 机械设计与制造, 2023(1), 5.
20 Wu L J, Qin J Y, Li A H, et al.Journal of Mechanical Transmission, 2022, 46(7), 167(in Chinese).
吴鲁纪, 秦佳音, 李安虎, 等. 机械传动, 2022, 46(7), 167.
21 He K M, Zhang X Y, Ren S Q, et al. In:Conference Record of the 2016 IEEE 29th Conference on Computer Vision and Pattern Recognition. Las Vegas, DOI:10.1109/CVPR.2016.90.
[1] 姜文平, 庞兴志, 何娟霞, 杨文超, 湛永钟. 骨修复用钛合金-羟基磷灰石复合材料的制备工艺及性能综述[J]. 材料导报, 2025, 39(5): 24090227-14.
[2] 程东海, 张夫庭, 陶玄宇, 余超, 龚浩, 李海涛, 王德, 熊震宇. 稀土元素对钛合金激光焊接头组织及性能的影响[J]. 材料导报, 2025, 39(3): 23060020-5.
[3] 李冲, 晏阳阳, 杨祯彧, 宋德军, 胡伟民, 杨胜利, 田世伟, 江海涛. TA24合金多道次热变形行为及管材制备仿真[J]. 材料导报, 2025, 39(2): 23120078-7.
[4] 王淼儒, 柴晓杰, 闫泽宇, 索丁丁, 冀健龙. 高稳定性氧化镓基忆阻器的构筑和神经形态计算应用[J]. 材料导报, 2025, 39(11): 25020107-6.
[5] 焦纪强, 蒙峻, 谢文君, 刘建龙, 魏宁斐, 罗成, 郭方准, 王润成. 超高真空环境下TC4钛合金和ZrO2陶瓷的出气性能研究[J]. 材料导报, 2025, 39(1): 23090126-5.
[6] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[7] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[8] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[9] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[10] 邱贺方, 侯笑晗, 郭晓辉, 崔帆帆, 侯根良, 张泽, 罗伟蓬, 袁晓静. 电弧增材制造薄壁件形状控制研究进展[J]. 材料导报, 2024, 38(6): 22080200-14.
[11] 张雷, 龙伟民, 樊志斌, 都东, 刘大双, 孙志鹏, 李宇佳, 尚勇. CuTi对Ti-6Al-4V钛合金表面金刚石/AlSi复合钎涂层组织与耐磨性能的影响[J]. 材料导报, 2024, 38(21): 23080114-4.
[12] 张健, 朱智浩, 张爽, 董闯. 高Al含量的亚稳β型Ti-Al-Mo-Nb-V系列钛合金的组织与力学性能[J]. 材料导报, 2024, 38(2): 22040297-6.
[13] 郭志永, 李猛, 张志强, 路学成, 张天刚, 曹轶然. 基于响应面法的镍基高温合金GH4169电弧增材工艺优化[J]. 材料导报, 2024, 38(19): 23060136-7.
[14] 张艳飞, 张永志, 公维炜, 刘孝, 卫志刚. 基于GoogLeNet Inception V3模型的火电用钢金相组织智能识别[J]. 材料导报, 2024, 38(17): 23050138-7.
[15] 王同波, 李伯龙, 亓鹏, 王云鹏, 莫永达, 娄花芬. 含铒近α型高温钛合金中α相的动/静态球化机制[J]. 材料导报, 2024, 38(17): 23100083-6.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed