Please wait a minute...
材料导报  2024, Vol. 38 Issue (17): 23050138-7    https://doi.org/10.11896/cldb.23050138
  金属与金属基复合材料 |
基于GoogLeNet Inception V3模型的火电用钢金相组织智能识别
张艳飞1, 张永志2,*, 公维炜1, 刘孝1, 卫志刚1
1 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司,呼和浩特 010020
2 内蒙古农业大学机电工程学院,呼和浩特 010018
Intelligent Recognition of Microstructure of Steel in Thermal Power Unit Based on GoogLeNet Inception V3 Model
ZHANG Yanfei1, ZHANG Yongzhi2,*, GONG Weiwei1, LIU Xiao1, WEI Zhigang1
1 Inner Mongolia Power Research Institute Branch, Inner Mongolia Power (Group) Co., Ltd., Hohhot 010020, China
2 College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
下载:  全 文 ( PDF ) ( 12699KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 火电机组用钢多为合金钢,金相组织复杂,且长期在高温高压环境下服役,存在组织老化等问题。金相检验人工识别易受主观因素影响,识别精度波动大,结果重复性差。利用金相检验图像,依据相关标准建立火电用钢金相组织数据集,并将其拆分为训练集、验证集和测试集。基于GoogLeNet Inception V3模型建立原始、迁移学习、微调迁移学习三个模型,以训练集训练模型,在验证集上泛化能力最佳的模型作为最终模型,测试集结合混淆矩阵对所建模型性能进行综合评价。三个模型对火电用钢金相组织的识别准确率分别为96.6%、93.0%和92.4%,均能够对复杂金相组织进行较为准确的识别。其中原始Inception V3模型性能最优,在测试集的准确率、精确度、灵敏度和特异度指标的均值分别为96.6%、96.6%、96.6%和99.2%。本研究为复杂金相组织智能识别提供了新方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张艳飞
张永志
公维炜
刘孝
卫志刚
关键词:  金相组织  智能识别  深度学习  卷积神经网络  计算材料学    
Abstract: The steel used in thermal power units is mostly alloy steel, which have complex metallographic structures and have been used in high-temperature and high-pressure environments for a long time, resulting in structural aging and other phenomena. The manual recognition of metallographic organization is easily influenced by subjective factors of the testing personnel, with large fluctuations in recognition accuracy and poor repeatability of results. This study utilized metallographic organization images to establish a dataset of metallographic organization for thermal power steel based on relevant standards, and divided it into training, validation, and testing sets. Based on the GoogLeNet Inception V3 model, three models of original, transfer learning and fine tuning transfer learning were established, and the training set training model was used. The model with the best generalization ability on the verification set was taken as the final model. The test set was combined with the confusion matrix to comprehensively evaluate the performance of the built model. The results show that the recognition accuracy of the three models for the metallographic structure of steel used in thermal power is 96.6%, 93.0%, and 92.4%, respectively, which can accurately identify complex metallographic structures. The original Inception V3 model has the best performance, with an average of 96.6%, 96.6%, 96.6%, and 99.2% for accuracy, positive predictive value, true positive rate, and true negative rate in the test set. This study provides a new method for intelligent recognition of complex metallographic structures.
Key words:  microstructure    intelligent recognition    deep learning    convolutional neural network    computational material science
出版日期:  2024-09-10      发布日期:  2024-09-30
ZTFLH:  TG142.1+5  
通讯作者:  *张永志,2014年毕业于内蒙古工业大学,获得工学博士学位。于2008—2016年在内蒙古能源发电投资集团有限公司电力工程技术研究院从事火力发电厂金属与焊接检验与理化分析工作,2016年开始在内蒙古农业大学机电工程学院从事人工智能技术在材料科学与工程领域的应用研究。发表学术论文20余篇,其中EI收录9篇。zhangyongzhi@imau.edu.cn   
作者简介:  张艳飞,2004年7月和2006年12月分别于内蒙古工业大学获得工学学士学位和硕士学位。现于内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司从事发输变电失效分析、无损检测工作。发表论文20余篇,出版专著3部。
引用本文:    
张艳飞, 张永志, 公维炜, 刘孝, 卫志刚. 基于GoogLeNet Inception V3模型的火电用钢金相组织智能识别[J]. 材料导报, 2024, 38(17): 23050138-7.
ZHANG Yanfei, ZHANG Yongzhi, GONG Weiwei, LIU Xiao, WEI Zhigang. Intelligent Recognition of Microstructure of Steel in Thermal Power Unit Based on GoogLeNet Inception V3 Model. Materials Reports, 2024, 38(17): 23050138-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23050138  或          http://www.mater-rep.com/CN/Y2024/V38/I17/23050138
1 Decost B L, Holm E A. Computational Materials Science, 2015, 110, 126.
2 Chowdhury A, Kautz E, Yener B, et al. Computational Materials Science, 2016, 123, 176.
3 Naik D L, Sajid H U, Kiran R. Metals, 2019, 9(5), 546.
4 Tsutsui K, Terasaki H, Uto K, et al. Materials Today Communications, 2020, 25, 1.
5 Wu W H, Lee J C, Wang Y M. Sensors, 2020, 20(19), 1.
6 Yang X, Shi C, Cao H, et al. American Chemical Society Omega, 2023, 8(6), 5300.
7 Kusche C, Reclik T, Freund M, et al. Plos One, 2019, 14(5), 1.
8 Hu F K. Microstructure identification of high strength steel materials based on texture recognition and deep convolution neural network. Master's Thesis, Huazhong University of Science & Technology, China, 2019 (in Chinese).
胡方康. 基于纹理识别和深度卷积神经网络的高强钢材料显微组织识别. 硕士学位论文, 华中科技大学, 2019.
9 He H Z. Automatic identification of steel metallographic structure based on deep learning. Master's Thesis, Wuhan Institute of Technology, China, 2022 (in Chinese).
何惠珍. 基于深度学习的钢材金相组织自动化识别. 硕士学位论文, 武汉工程大学, 2022.
10 Zhang Y Z, Xin Q Z, Kong X M, et al. Hot Working Technology, 2021, 50(12), 68 (in Chinese).
张永志, 辛全忠, 孔祥明, 等. 热加工工艺, 2021, 50(12), 68.
11 Zhang Y Z, Li X Y, Xin Q Z, et al. Materials Reports, 2022, 36(12), 160 (in Chinese).
张永志, 李旭英, 辛全忠 等. 材料导报, 2022, 36(12), 160.
12 Dimiduk D M, Holm E A, Niezgoda S R. Integrating Materials and Manufacturing Innovation, 2018, 7(3), 157.
13 Decost B L, Francis T, Holm E A. Acta Materialia, 2017, 133, 30.
14 Adachi Y, Taguchi M, Hirokawa S. Tetsu-to-Hagane, 2016, 102(12), 722.
15 Krizhevsky A, Sutskever I, Hinton G E, et al. In:NIPS'12:Proceedings of the 25th International Conference on Neural Information Processing Systems. Nevada, 2012, pp.1097.
16 Simonyan K, Zisserman A. Computer Science, DOI:10.48550/arXiv.1409.1556.
17 Szegedy C, Liu W, Jia Y, et al. In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, 2015, pp.1.
18 Ioffe S, Szegedy C. In:International Conference on Machine Learning. Lille, 2015, pp.448.
19 Szegedy C, Vanhoucke V, Ioffe S, et al. In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, 2016, pp.2818.
20 Shin H C, Roth H R, Gao M, et al. IEEE Transactions on Medical Imaging, 2016, 35(5), 1285.
21 Zhang Y Z, Xin Q Z, Wang Y L, et al. Materials Reports, 2021, 35(24), 152 (in Chinese).
张永志, 辛全忠, 王永亮, 等. 材料导报, 2021, 35(24), 152.
22 Foody G M. Remote Sensing of Environment, 2002, 80(1), 185.
[1] 刘凯伟, 刘琦牮, 李骏, 余映红, 卿新林. 基于FBG传感器和卷积神经网络的复合材料结构载荷识别研究[J]. 材料导报, 2023, 37(1): 21040290-7.
[2] 刘鹏, 马吉恩, 方攸同, 李刚. 多次补焊对304不锈钢焊接接头性能的影响[J]. 材料导报, 2022, 36(Z1): 21120176-5.
[3] 杨传礼, 张修庆. 基于机器视觉和深度学习的材料缺陷检测应用综述[J]. 材料导报, 2022, 36(16): 20070136-9.
[4] 张永志, 李旭英, 辛全忠, 孔祥明, 王永亮. 自组织CNN建模识别耐热钢金相组织研究[J]. 材料导报, 2022, 36(12): 21030032-6.
[5] 商怀帅, 邵姝文, 冯海暴, 李永升. NPR钢筋力学性能试验研究[J]. 材料导报, 2022, 36(10): 21010164-7.
[6] 张永志, 辛全忠, 王永亮, 孔祥明, 刘昉, 杨再胜. 基于迁移学习的钢金相组织分类与识别方法的研究[J]. 材料导报, 2021, 35(24): 24152-24157.
[7] 黄炜, 葛培, 李萌, 许洪飞. 混杂纤维再生砖骨料混凝土正交试验及卷积神经网络预测分析[J]. 材料导报, 2021, 35(19): 19022-19029.
[8] 张度宝, 李成涛, 方可伟, 罗坤杰, 王力, 武焕春, 薛飞. 回火温度对42CrMo4高强钢力学性能及应力腐蚀敏感性的影响[J]. 材料导报, 2021, 35(16): 16133-16137.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed