Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 25020107-6    https://doi.org/10.11896/cldb.25020107
  无机非金属及其复合材料 |
高稳定性氧化镓基忆阻器的构筑和神经形态计算应用
王淼儒, 柴晓杰*, 闫泽宇, 索丁丁, 冀健龙*
太原理工大学集成电路学院,山西 晋中 030600
Development and Construction of High-stability Gallium Oxide-based Memristors for Neuromorphic Computing Applications
WANG Miaoru, CHAI Xiaojie*, YAN Zeyu, SUO Dingding, JI Jianlong*
School of Integrated Circuit, Taiyuan University of Technology, Jinzhong 030600, Shanxi, China
下载:  全 文 ( PDF ) ( 16321KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在后摩尔时代,忆阻器因其能够模拟生物突触功能,可被用于开发高性能的类脑计算。然而,如何实现兼具鲁棒性与低功耗的人工突触器件成为当前的研究重点。选用氟掺杂的氧化锡(FTO)作为衬底,采用磁控溅射技术制备非晶的GaOx作为阻变层,构建了Ag/GaOx/FTO忆阻器。研究表明,该器件表现出优异的多级存储特性,包括保持时间将近104 s、循环次数超过150次以及超过100个状态的高线性电导调制。进一步模拟了经典的“巴甫洛夫狗”条件反射过程,并基于Ag/GaOx/FTO忆阻器阵列搭建了卷积神经网络(CNN),实现了60 000张手写数字图像的有效识别,准确率达到91.34%。本工作表明,Ag/GaOx/FTO忆阻器在神经形态计算领域中具有巨大的潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王淼儒
柴晓杰
闫泽宇
索丁丁
冀健龙
关键词:  忆阻器  GaOx  神经突触  卷积神经网络    
Abstract: Memristors, promising nanoelectronic devices with the ability to emulate biological synaptic functionalities, have great potential for use in high-performance neuromorphic computing in the post-Moore era. However, realization of high-performance artificial synaptic devices with robustness and low-power consumption remains faces great challenges. Here, we report a memristor based on amorphous gallium oxide (GaOx) memristive layer structure, deposited via magnetron sputtering on fluorine-doped tin oxide (FTO) substrates. The device exhibits excellent multilevel storage properties, including retention times approaching 104 s, cycling endurance exceeding 150 cycles, and highly linear conductance modulation with over 100 distinct conductance states. Furthermore, classical “Pavlov’s dog” conditioned reflex behavior was successfully emulated. In addition, a convolutional neural network (CNN) based on an Ag/GaOx/FTO memristor array was constructed, effectively recognizing 60 000 handwritten digit images with an accuracy of 91.34%. Our findings underscore the significant potential of the developed Ag/GaOx/FTO memristor for applications in neuromorphic computing.
Key words:  memristor    GaOx    neural synapse    convolutional neural network
发布日期:  2025-05-29
ZTFLH:  TN60  
基金资助: 国家自然科学基金(52203316);中国博士后科学基金(2024M762331)
通讯作者:  *柴晓杰,博士,太原理工大学集成电路学院讲师、硕士研究生导师。目前主要从事神经形态忆阻器、新型传感器等方面的研究。chaixiaojie@tyut.edu.cn
冀健龙,博士,太原理工大学集成电路学院副院长/教授、博士研究生导师。目前主要从事神经形态芯片、微纳传感器、智能微系统等方面的研究。jijianlong@tyut.edu.cn   
作者简介:  王淼儒,太原理工大学集成电路学院硕士研究生,在柴晓杰老师的指导下进行研究。目前主要研究领域为神经形态忆阻器。
引用本文:    
王淼儒, 柴晓杰, 闫泽宇, 索丁丁, 冀健龙. 高稳定性氧化镓基忆阻器的构筑和神经形态计算应用[J]. 材料导报, 2025, 39(11): 25020107-6.
WANG Miaoru, CHAI Xiaojie, YAN Zeyu, SUO Dingding, JI Jianlong. Development and Construction of High-stability Gallium Oxide-based Memristors for Neuromorphic Computing Applications. Materials Reports, 2025, 39(11): 25020107-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25020107  或          https://www.mater-rep.com/CN/Y2025/V39/I11/25020107
1 Wang Y H, Liu C, Huang R, et al. Science Bulletin, 2020, 65(10), 904 (in Chinese).
王洋昊, 刘昌, 黄如, 等. 科学通报, 2020, 65(10), 904.
2 Sun L, Lai M, Wu H Q, et al. Science Foundation in China, 2020, 34(5), 652(in Chinese).
孙玲, 黎明, 吴华强, 等. 中国科学基金, 2020, 34(5), 652.
3 Shi C Y, Zhang C, Bi R, et al. Materials Reports, 2025, 39(14), 23080054 (in Chinese).
施纯言, 张程, 毕冉, 等. 材料导报, 2025, 39(14), 23080054.
4 Gong Y C, Ming J Y, Wu S Q, et al. Acta Physica Sinica, 2024, 73(20), 233 (in Chinese).
贡以纯, 明建宇, 吴思齐, 等. 物理学报, 2024, 73(20), 233.
5 Xiao Y, Jiang B, Zhang Z, et al. Science and Technology of Advanced Materials, 2023, 24(1), 2162323.
6 So H, Ji H, Kim S, et al. Advanced Functional Materials, 2024, 34(51), 2405544.
7 Zhang Y, Long S B, Liu M. Physics, 2017, 46(10), 645 (in Chinese).
张颖, 龙世兵, 刘明. 物理, 2017, 46(10), 645.
8 Yan X, Jia X, Zhang Y, et al. Nano Energy, 2023, 107, 108091.
9 Aoki Y, Wiemann C, Feyer V, et al. Nature Communications, 2014, 5(1), 3473.
10 Pearton S J, Yang J, Cary P H, et al. Applied Physics Reviews, 2018, 5(1), 011301.
11 Wang L W, Huang C W, Lee K J, et al. Nanomaterials, 2023, 13(12), 1851.
12 Lee H J, Kim J H, Choi J, et al. Heliyon, 2023, 9(12), 23157.
13 Wang Y, Hu W, Kang K, et al. The Journal of Physical Chemistry Letters, 2024, 15(45), 11182.
14 Hou X, Zhao X, Zhang Y, et al. Advanced Materials, 2021, 34(1), 2106923.
15 Liu Y, Zuo Q, Sun J, et al. Journal of Applied Physics, 2024, 135(18), 184502.
16 Ju D, Ahn J, Ho J, et al. Mathematics, 2023, 11(20), 4325.
17 Yan X B, Hao H, Chen Y F, et al. Applied Physics Letters, 2014, 105(9), 093502.
18 Wang W, Gao X, Lin Z, et al. Advanced Electronic Materials, 2024, 11(4), 2400512.
19 Hu L, Yang J, Wang J, et al. Advanced Functional Materials, 2021, 31(4), 2005582.
20 Yang J, Hu L, Shen L, et al. Fundamental Research, 2024, 4(1), 158.
21 Thomas A, Saha P, Sahad E M, et al. ACS Applied Materials & Interfaces, 2024, 16(16), 20693.
22 Gosai J, Patel M, Liu L, et al. ACS Applied Materials & Interfaces, 2024, 16(14), 17821.
23 Ma P, Liang G, Wang Y, et al. IEEE Transactions on Electron Devices, 2019, 66(6), 2600.
24 Tarsoly G, Lee J Y, Shan F, et al. Applied Surface Science, 2022, 601, 154281.
25 Hu L, Fu S, Chen Y, et al. Advanced Materials, 2017, 29(24), 1606927.
26 Zhang Y, Wang L, Chen H, et al. Advanced Electronic Materials, 2021, 7(12), 2100609.
27 Xu Z, Li Y, Xia Y, et al. Advanced Functional Materials, 2024, 34(16), 2312658.
28 Zhou L, Yang S, Ding G, et al. Nano Energy, 2019, 58, 293.
29 Zhang X, Chen H, Cheng S, et al. ACS Applied Materials & Interfaces, 2022, 14(39), 44614.
30 Lee T H, Hwang H G, Woo J U, et al. ACS Applied Materials & Interfaces, 2018, 10(30), 25673.
31 Luo F, Zhong W M, Tang X G, et al. Nano Materials Science, 2024, 6(1), 68.
32 Huang J, Yang S, Tang X, et al. Advanced Materials, 2023, 35(33), 2303737.
33 Wei H, Yu H, Gong J, et al. Advanced Functional Materials, 2021, 31(1), 2007232.
34 Kou L, Sadri R, Momodu D, et al. ACS Applied Nano Materials, 2024, 7(4), 3631.
35 Meng J, Li Z, Fang Y, et al. IEEE Electron Device Letters, 2022, 43(12), 2069.
36 Chen S, Zhang T, Tappertzhofen S, et al. Advanced Materials, 2023, 35(37), 2301924.
37 Saha P, Sahad E M, Sathyanarayana S, et al. ACS Nano, 2024, 18(1), 1137.
38 Meng J, Song J, Fang Y, et al. ACS Nano, 2024, 18(12), 9150.
39 Li Y, Xiong Y, Zhang X, et al. Nature Electronics, 2025, 8(1), 36.
[1] 刘菁, 张建, 赵波. 光电忆阻器用于突触仿生领域的研究进展[J]. 材料导报, 2024, 38(4): 22060027-10.
[2] 张艳飞, 张永志, 公维炜, 刘孝, 卫志刚. 基于GoogLeNet Inception V3模型的火电用钢金相组织智能识别[J]. 材料导报, 2024, 38(17): 23050138-7.
[3] 余志强, 徐佳敏, 韩旭, 陈诚, 曲信儒, 唐锦, 孙子君, 徐智谋. 金红石TiO2纳米线忆阻器的制备及阻变存储机制[J]. 材料导报, 2024, 38(13): 23020160-7.
[4] 史燃, 张翔宇, 南波航, 徐桂英. Cu2Se热电忆阻器模拟计算与性能表征[J]. 材料导报, 2023, 37(13): 22010058-7.
[5] 刘凯伟, 刘琦牮, 李骏, 余映红, 卿新林. 基于FBG传感器和卷积神经网络的复合材料结构载荷识别研究[J]. 材料导报, 2023, 37(1): 21040290-7.
[6] 曹青, 熊礼苗, 李鹏程. 二维忆阻材料及其阻变机理研究进展[J]. 材料导报, 2022, 36(21): 21040128-12.
[7] 杨传礼, 张修庆. 基于机器视觉和深度学习的材料缺陷检测应用综述[J]. 材料导报, 2022, 36(16): 20070136-9.
[8] 张永志, 李旭英, 辛全忠, 孔祥明, 王永亮. 自组织CNN建模识别耐热钢金相组织研究[J]. 材料导报, 2022, 36(12): 21030032-6.
[9] 陈晓平, 楼玉民, 赵宁宁, 黄一君, 胡海龙, 岳建岭. 基于异质结构忆阻器的研究进展[J]. 材料导报, 2022, 36(10): 20070058-10.
[10] 张永志, 辛全忠, 王永亮, 孔祥明, 刘昉, 杨再胜. 基于迁移学习的钢金相组织分类与识别方法的研究[J]. 材料导报, 2021, 35(24): 24152-24157.
[11] 黄炜, 葛培, 李萌, 许洪飞. 混杂纤维再生砖骨料混凝土正交试验及卷积神经网络预测分析[J]. 材料导报, 2021, 35(19): 19022-19029.
[12] 陆骐峰,孙富钦,王子豪,张珽. 柔性人工突触:面向智能人机交互界面和高效率神经网络计算的基础器件[J]. 材料导报, 2020, 34(1): 1022-1049.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed