Abstract: Memristors, promising nanoelectronic devices with the ability to emulate biological synaptic functionalities, have great potential for use in high-performance neuromorphic computing in the post-Moore era. However, realization of high-performance artificial synaptic devices with robustness and low-power consumption remains faces great challenges. Here, we report a memristor based on amorphous gallium oxide (GaOx) memristive layer structure, deposited via magnetron sputtering on fluorine-doped tin oxide (FTO) substrates. The device exhibits excellent multilevel storage properties, including retention times approaching 104 s, cycling endurance exceeding 150 cycles, and highly linear conductance modulation with over 100 distinct conductance states. Furthermore, classical “Pavlov’s dog” conditioned reflex behavior was successfully emulated. In addition, a convolutional neural network (CNN) based on an Ag/GaOx/FTO memristor array was constructed, effectively recognizing 60 000 handwritten digit images with an accuracy of 91.34%. Our findings underscore the significant potential of the developed Ag/GaOx/FTO memristor for applications in neuromorphic computing.
王淼儒, 柴晓杰, 闫泽宇, 索丁丁, 冀健龙. 高稳定性氧化镓基忆阻器的构筑和神经形态计算应用[J]. 材料导报, 2025, 39(11): 25020107-6.
WANG Miaoru, CHAI Xiaojie, YAN Zeyu, SUO Dingding, JI Jianlong. Development and Construction of High-stability Gallium Oxide-based Memristors for Neuromorphic Computing Applications. Materials Reports, 2025, 39(11): 25020107-6.
1 Wang Y H, Liu C, Huang R, et al. Science Bulletin, 2020, 65(10), 904 (in Chinese). 王洋昊, 刘昌, 黄如, 等. 科学通报, 2020, 65(10), 904. 2 Sun L, Lai M, Wu H Q, et al. Science Foundation in China, 2020, 34(5), 652(in Chinese). 孙玲, 黎明, 吴华强, 等. 中国科学基金, 2020, 34(5), 652. 3 Shi C Y, Zhang C, Bi R, et al. Materials Reports, 2025, 39(14), 23080054 (in Chinese). 施纯言, 张程, 毕冉, 等. 材料导报, 2025, 39(14), 23080054. 4 Gong Y C, Ming J Y, Wu S Q, et al. Acta Physica Sinica, 2024, 73(20), 233 (in Chinese). 贡以纯, 明建宇, 吴思齐, 等. 物理学报, 2024, 73(20), 233. 5 Xiao Y, Jiang B, Zhang Z, et al. Science and Technology of Advanced Materials, 2023, 24(1), 2162323. 6 So H, Ji H, Kim S, et al. Advanced Functional Materials, 2024, 34(51), 2405544. 7 Zhang Y, Long S B, Liu M. Physics, 2017, 46(10), 645 (in Chinese). 张颖, 龙世兵, 刘明. 物理, 2017, 46(10), 645. 8 Yan X, Jia X, Zhang Y, et al. Nano Energy, 2023, 107, 108091. 9 Aoki Y, Wiemann C, Feyer V, et al. Nature Communications, 2014, 5(1), 3473. 10 Pearton S J, Yang J, Cary P H, et al. Applied Physics Reviews, 2018, 5(1), 011301. 11 Wang L W, Huang C W, Lee K J, et al. Nanomaterials, 2023, 13(12), 1851. 12 Lee H J, Kim J H, Choi J, et al. Heliyon, 2023, 9(12), 23157. 13 Wang Y, Hu W, Kang K, et al. The Journal of Physical Chemistry Letters, 2024, 15(45), 11182. 14 Hou X, Zhao X, Zhang Y, et al. Advanced Materials, 2021, 34(1), 2106923. 15 Liu Y, Zuo Q, Sun J, et al. Journal of Applied Physics, 2024, 135(18), 184502. 16 Ju D, Ahn J, Ho J, et al. Mathematics, 2023, 11(20), 4325. 17 Yan X B, Hao H, Chen Y F, et al. Applied Physics Letters, 2014, 105(9), 093502. 18 Wang W, Gao X, Lin Z, et al. Advanced Electronic Materials, 2024, 11(4), 2400512. 19 Hu L, Yang J, Wang J, et al. Advanced Functional Materials, 2021, 31(4), 2005582. 20 Yang J, Hu L, Shen L, et al. Fundamental Research, 2024, 4(1), 158. 21 Thomas A, Saha P, Sahad E M, et al. ACS Applied Materials & Interfaces, 2024, 16(16), 20693. 22 Gosai J, Patel M, Liu L, et al. ACS Applied Materials & Interfaces, 2024, 16(14), 17821. 23 Ma P, Liang G, Wang Y, et al. IEEE Transactions on Electron Devices, 2019, 66(6), 2600. 24 Tarsoly G, Lee J Y, Shan F, et al. Applied Surface Science, 2022, 601, 154281. 25 Hu L, Fu S, Chen Y, et al. Advanced Materials, 2017, 29(24), 1606927. 26 Zhang Y, Wang L, Chen H, et al. Advanced Electronic Materials, 2021, 7(12), 2100609. 27 Xu Z, Li Y, Xia Y, et al. Advanced Functional Materials, 2024, 34(16), 2312658. 28 Zhou L, Yang S, Ding G, et al. Nano Energy, 2019, 58, 293. 29 Zhang X, Chen H, Cheng S, et al. ACS Applied Materials & Interfaces, 2022, 14(39), 44614. 30 Lee T H, Hwang H G, Woo J U, et al. ACS Applied Materials & Interfaces, 2018, 10(30), 25673. 31 Luo F, Zhong W M, Tang X G, et al. Nano Materials Science, 2024, 6(1), 68. 32 Huang J, Yang S, Tang X, et al. Advanced Materials, 2023, 35(33), 2303737. 33 Wei H, Yu H, Gong J, et al. Advanced Functional Materials, 2021, 31(1), 2007232. 34 Kou L, Sadri R, Momodu D, et al. ACS Applied Nano Materials, 2024, 7(4), 3631. 35 Meng J, Li Z, Fang Y, et al. IEEE Electron Device Letters, 2022, 43(12), 2069. 36 Chen S, Zhang T, Tappertzhofen S, et al. Advanced Materials, 2023, 35(37), 2301924. 37 Saha P, Sahad E M, Sathyanarayana S, et al. ACS Nano, 2024, 18(1), 1137. 38 Meng J, Song J, Fang Y, et al. ACS Nano, 2024, 18(12), 9150. 39 Li Y, Xiong Y, Zhang X, et al. Nature Electronics, 2025, 8(1), 36.