Please wait a minute...
材料导报  2025, Vol. 39 Issue (14): 23120180-6    https://doi.org/10.11896/cldb.23120180
  无机非金属及其复合材料 |
基于材料成本与碳排放成本最小化的低碳混凝土配合比优化设计方法
梁卓悦1,2, 余波1,*, 蔡盛源1, 解威威3
1 广西大学土木建筑工程学院,南宁 530004
2 广西交通职业技术学院航海工程学院,南宁 530023
3 广西路桥工程集团有限公司,南宁 530200
Optimization Design Method for Mix Proportion of Low-carbon Concrete Based on Minimization of Material Cost and Carbon Emission Cost
LIANG Zhuoyue1,2, YU Bo1,*, CAI Shengyuan 1, XIE Weiwei3
1 School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
2 School of Navigation Engineering, Guangxi Transport Vocational and Technical College, Nanning 530023, China
3 Guangxi Road and Bridge Engineering Group Co., Ltd., Nanning 530200, China
下载:  全 文 ( PDF ) ( 4258KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为满足安全、耐久、经济、低碳等需求,本研究提出了一种综合考虑强度、耐久性、制备成本、碳排放量、工作性能等多性能目标需求的低碳混凝土配合比优化设计方法。首先综合考虑材料成本和碳排放成本,基于碳定价构建了低碳混凝土配合比优化设计的目标函数;然后建立了复掺粉煤灰和矿渣混凝土的抗压强度、氯离子扩散系数和龄期衰减系数的预测模型,进而建立了综合考虑强度、耐久性、工作性能等多性能目标需求的约束条件,构建了基于多性能目标需求的低碳混凝土配合比设计优化模型;最后利用遗传算法求解优化模型,确定了混凝土的水泥用量、粉煤灰用量和矿渣用量等配合比设计参数,并通过与传统方法进行对比分析验证了该方法的有效性。分析结果表明:对于设计强度为35~50 MPa的混凝土,与传统基于强度和工作性能的混凝土配合比设计方法相比,该方法的总成本可以减少40.3~47.8 元·m-3,碳排放量可以降低34.5~43.0 kg CO2-eq·m-3;与基于强度和耐久性的混凝土配合比设计方法相比,该方法的总成本可以减少1.8~24.5 元·m-3,碳排放量可以降低1.7~19.1 kg CO2-eq·m-3
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁卓悦
余波
蔡盛源
解威威
关键词:  混凝土  配合比设计  低碳  耐久性  多性能目标    
Abstract: In order to meet the requirements of safety, durability, economy and low carbon, an optimization design method for mix proportion of low-carbon concrete was proposed based on multi-performance requirements of strength, durability, cost, carbon emission and working perfor-mance. The objective function of low-carbon concrete was constructed based on the carbon pricing first by considering the total cost of material and carbon emission. Then the prediction models for compressive strength, chloride diffusion coefficient and aging factor of fly ash and slag concrete were determined. Meanwhile, the constraint conditions for meeting the multi-performance requirements of strength, durability and working performance were constructed. Moreover, the optimization model for mix proportion design of low-carbon concrete with multi-performance objective requirements was established. Finally, the mix proportions such as cement content, fly ash content and slag content of low-carbon concrete were determined by solving the optimization model with the genetic algorithm. The efficiency of the proposed method was validated by comparing it with conventional methods. Analysis results show that the total cost and carbon emission could be reduced by the proposed method about 40.3—47.8 yuan·m-3 and 34.5—43.0 kg CO2-eq·m-3 respectively compared with the conventional mix proportion design method based on strength and working performance, while it may reduce the total cost and carbon emission by 1.8—24.5 yuan·m-3 and 1.7—19.1 kg CO2-eq·m-3 respectively compared with the conventional mix proportion design method based on strength and durability when the design strength of concrete is 35—50 MPa.
Key words:  concrete    mix proportion    low-carbon    durability    multi-performance
出版日期:  2025-07-25      发布日期:  2025-07-29
ZTFLH:  TU528.01  
基金资助: 广西重点研发项目(GKAB23026026);中央引导地方科技发展资金项目(20221229);国家自然科学基金(52278162;62266005);2025年度广西高校中青年教师科研基础能力提升项目(2025KY1519)
通讯作者:  * 余波,博士,广西大学土木建筑工程学院教授、博士研究生导师。主要从事混凝土结构耐久性定量分析与设计、混凝土结构性能劣化机制与安全评估以及工程结构随机分析与风险评估等方面研究。gxuyubo@gxu.edu.cn   
作者简介:  梁卓悦,广西大学土木工程硕士研究生,在余波教授的指导下进行研究。目前主要研究领域为低碳混凝土配合比优化设计。
引用本文:    
梁卓悦, 余波, 蔡盛源, 解威威. 基于材料成本与碳排放成本最小化的低碳混凝土配合比优化设计方法[J]. 材料导报, 2025, 39(14): 23120180-6.
LIANG Zhuoyue, YU Bo, CAI Shengyuan , XIE Weiwei. Optimization Design Method for Mix Proportion of Low-carbon Concrete Based on Minimization of Material Cost and Carbon Emission Cost. Materials Reports, 2025, 39(14): 23120180-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120180  或          https://www.mater-rep.com/CN/Y2025/V39/I14/23120180
1 Jin Z Q, Zhao X, Du Y J, et al. Construction and Building Materials, 2022, 319, 126142.
2 Ma H Y, Song S S, Yu H F, et al. Journal of Building Materials, 2023, 26(8), 897 (in Chinese).
麻海燕, 宋姗姗, 余红发, 等. 建筑材料学报, 2023, 26(8), 897.
3 Yu H F, Da B, Ma H Y, et al. Journal of Building Materials, 2019, 22(6), 993 (in Chinese).
余红发, 达波, 麻海燕, 等. 建筑材料学报, 2019, 22(6), 993.
4 Feng G Y, Jin Z Q, Xiong C S, et al. Material Reports, 2020, 34(8), 8064 (in Chinese).
冯光岩, 金祖权, 熊传胜, 等. 材料导报, 2020, 34(8), 8064.
5 Wu Z Y, Yu H F, Ma H Y, et al. Material Reports, 2019, 33(2), 264 (in Chinese).
吴彰钰, 余红发, 麻海燕, 等. 材料导报, 2019, 33(2), 264.
6 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Specification for mix proportion design of ordinary concrete(JGJ 55-2011), China Architecture & Building Press, China, 2011 (in Chinese).
中华人民共和国住房和城乡建设部. 普通混凝土配合比设计规程(JGJ 55-2011), 中国建筑工业出版社, 2011.
7 Yang L F, Zhou M, Chen Z, et al. China Civil Engineering Journal, 2016, 49(12), 65 (in Chinese).
杨绿峰, 周明, 陈正, 等. 土木工程学报, 2016, 49(12), 65.
8 Liu G T, Zhang B S, Yuan J, et al. Concrete, 2003(7), 31 (in Chinese).
刘广同, 张宝生, 袁杰, 等. 混凝土, 2003(7), 31.
9 Chen Q, Ma R, Jiang Z W, et al. Journal of Building Materials, 2020, 23(1), 176 (in Chinese).
陈庆, 马瑞, 蒋正武, 等. 建筑材料学报, 2020, 23(1), 176.
10 Xiao J Z, Deng Q, Xia B. Journal of Architecture and Civil Engineering, 2022, 39(5), 1 (in Chinese).
肖建庄, 邓琪, 夏冰. 建筑科学与工程学报, 2022, 39(5), 1.
11 Yeh I C. Engineering With Computers, 2009, 25, 179.
12 Yeh I C. Cement and Concrete Composites, 2007, 29, 193.
13 Chen H Y, Deng T T, Du T, et al. Cement and Concrete Composites, 2022, 129, 104446.
14 Wu X G, Wang L, Chen H Y, et al. Material Reports, 2022, 36(17), 115 (in Chinese).
吴贤国, 王雷, 陈虹宇, 等. 材料导报, 2022, 36(17), 115.
15 Ren Q B, Li W W, Li M C, et al. Journal of Hydraulic Engineering, 2022, 53(1), 98 (in Chinese).
任秋兵, 李文伟, 李明超, 等. 水利学报, 2022, 53(1), 98.
16 Wang X Y. Sustainability, 2019, 11, 5827.
17 Xiao X D. Study on life cycle carbon emission and life cycle cost of green buildings. Master's Thesis, Beijing Jiaotong University, China, 2021 (in Chinese).
肖旭东. 绿色建筑生命周期碳排放及生命周期成本研究. 硕士学位论文, 北京交通大学, 2021.
18 Yang K H, Jung Y B, Cho M S, et al. Journal of Cleaner Production, 2015, 103, 774.
19 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for building carbon emission calculation(GB/T 51366-2019), China Architecture & Building Press, China, 2019 (in Chinese).
中华人民共和国住房和城乡建设部. 建筑碳排放计算标准(GB/T 51366-2019), 中国建筑工业出版社, 2019.
20 Xu X B, Jin Z Q, Yu Y, et al. Material Reports, 2022, 36(S2), 184 (in Chinese).
徐翔波, 金祖权, 于泳, 等. 材料导报, 2022, 36(S2), 184.
21 Gong W, Yu H F, Ma H Y, et al. Journal of Building Engineering, 2023, 76, 107194.
22 Wang S N, Zeng J J, Fan Z H. China Civil Engineering Journal, 2021, 54(10), 82 (in Chinese).
王胜年, 曾俊杰, 范志宏. 土木工程学报, 2021, 54(10), 82.
23 Mehta P K, Aitcin P C C. Cement Concrete and Aggregates, 1990, 12, 70.
24 Li M Y, Liu Y, Han J G, et al. Journal of Building Materials, 2020, 48(7), 1107 (in Chinese).
黎梦圆, 刘宇, 韩建国, 等. 硅酸盐学报, 2020, 48(7), 1107.
25 Li N, Jin Z Q, Yu Y, et al. Journal of Civil and Environmental Engineering, 2019, 41(6), 71 (in Chinese).
李宁, 金祖权, 于泳, 等. 土木与环境工程学报(中英文), 2019, 41(6), 71.
26 Fan Z H, Yang H C, Yu F. Bulletin of the Chinese Ceramic Society, 2020, 39(8), 2622 (in Chinese).
范志宏, 杨海成, 于方. 硅酸盐通报, 2020, 39(8), 2622.
27 Fan Z H, Zeng J J, Xiong J B, et al. Port & Waterway Engineering, 2019(8), 63 (in Chinese).
范志宏, 曾俊杰, 熊建波, 等. 水运工程, 2019(8), 63.
28 Ehlen M A, Thomas M D A, Bentz E C. Concrete International, 2009, 31, 41.
29 Golafshani E M, Ashour A. Automation in Construction, 2016, 64, 7.
30 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for durability design of concrete structures(GB/T 50476-2019), China Architecture & Building Press, China, 2019 (in Chinese).
中华人民共和国住房和城乡建设部. 混凝土结构耐久性设计标准(GB/T 50476-2019), 中国建筑工业出版社, 2019.
31 Cen X, Wang Q, Shi X, et al. Sustainability, 2019, 11, 1991.
[1] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[2] 陈洋, 李增祎, 吴智, 邓承继, 娄晓明, 李勇庆, 谭嘉琳, 丁军, 余超. 催化剂添加量和温度对催化氮化制备低碳MgO-C耐火材料显微结构演变的影响[J]. 材料导报, 2025, 39(8): 24030031-5.
[3] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[4] 王艳, 常天风, 杨子凡, 李伊岚. 超高性能混凝土-普通混凝土界面粘结性能研究[J]. 材料导报, 2025, 39(7): 24020129-6.
[5] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[6] 李克亮, 杜建, 陈爱玖, 韩小燕. 污水管道混凝土微生物腐蚀机理、影响因素和模拟试验方法综述[J]. 材料导报, 2025, 39(7): 23120043-11.
[7] 姜彦杰, 刘浩天, 刘海峰, 车佳玲, 杨维武. 硫酸盐冻融后沙漠砂混凝土单轴受压力学性能试验研究[J]. 材料导报, 2025, 39(7): 23110222-11.
[8] 杜刚, 李亮, 王子晨, 吴俊, 杜修力. 碳纤维混凝土高温冷却后动态压缩性能试验研究[J]. 材料导报, 2025, 39(6): 24010268-6.
[9] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[10] 易忠来, 纪文骁, 李化建, 杨志强, 温浩, 王振. 混凝土稳健性评价方法及提升措施研究进展[J]. 材料导报, 2025, 39(6): 24020022-12.
[11] 王耀, 郑新颜, 黄伟, 吴应雄, 黄雅莹, 张恒春, 张峰. 超高性能混凝土-花岗岩石材界面的抗剪性能研究[J]. 材料导报, 2025, 39(6): 24010107-10.
[12] 潘杜, 牛荻涛, 罗大明. 海水海砂混凝土中低合金钢筋钝化膜结构及厚度预测模型[J]. 材料导报, 2025, 39(6): 23120173-8.
[13] 牛荻涛, 杨瑞希, 吕瑶, 孙杏杏, 曹志远, 吴鸿渠. SO2和CO2共同作用下混凝土性能劣化研究[J]. 材料导报, 2025, 39(5): 23120166-7.
[14] 曾鲁平, 乔敏, 赵爽, 王伟, 陈俊松, 朱伯淞, 冉千平, 洪锦祥. 乙烯-醋酸乙烯酯共聚物对喷射混凝土力学强度、渗透性能及水化微观
结构的影响
[J]. 材料导报, 2025, 39(5): 24020003-9.
[15] 翟慕赛, 刘可凡, 陶怡然, 陈建兵. 百年混凝土桥梁方形带肋钢筋力学性能研究[J]. 材料导报, 2025, 39(5): 24090049-6.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed