Abstract: Wood and bamboo, as abundant, eco-friendly, and biodegradable polymeric materials, offer promising precursors for hard carbon due to their hierarchical porous structures and rich functional groups. However, their derived hard carbons face practical challenges such as low specific capacity and initial Coulombic efficiency. This review surveys recent methods for producing hard carbons from wood and bamboo, focusing on the correlation between precursor structures and sodium storage performance. The study focused on analyzing the influence patterns of key factors such as defect structure, pore structure, and specific surface area on its sodium storage performance. Special attention is given to the limited approaches for closed-pore regulation, reviewing optimization methods and recent advancements. Finally, future research directions and challenges are outlined.
1 Hirsh H S, Li Y, Tan D H S, et al. Advanced Energy Materials, 2020, 10(32), 2001274. 2 Dey S C, Worfolk B, Lower L, et al. ACS Energy Letters, 2024, 9, 2590. 3 Jiang M, Sun N, Soomro R A, et al. Journal of Energy Chemistry, 2021, 55, 34. 4 Xu T, Qiu X, Zhang X, et al. Chemical Engineering Journal, 2023, 452, 139514. 5 Tang Z, Zhang R, Wang H, et al. Nature Communications, 2023, 14(1), 6024. 6 Qing Y, Liao Y, Liu J W, et al. Journal of Forestry Engineering, 2021, 6(5), 1 (in Chinese). 卿彦, 廖宇, 刘婧祎, 等. 林业工程学报, 2021, 6(5), 1. 7 Yu W J, Jiang Z H, Ye K L. Word Forestry Reasarch, 2002, 15(2), 50 (in Chinese). 于文吉, 江泽慧, 叶克林. 世界林业研究, 2002, 15(2), 50. 8 Wu Y Q. Journal of Central South University of Forestry & Technology, 2021, 41(1), 1 (in Chinese). 吴义强. 中南林业科技大学学报, 2021, 41(1), 1. 9 Wegst U G K, Bai H, Saiz E, et al. Nature Materials, 2015, 14(1), 23. 10 Zhu J, Roscow J, Chandrasekaran S, et al. ChemSusChem, 2020, 13(6), 1275. 11 Qing Y. Journal of Central South University of Forestry & Technology, 2022, 42(12), 13 (in Chinese). 卿彦. 中南林业科技大学学报, 2022, 42(12), 13. 12 Chen H. Study on the structural characteristics of bamboo cell wall. Ph. D. Thesis, Chinese Academy of Forestry, China, 2014 (in Chinese). 陈红. 竹纤维细胞壁结构特征研究. 博士学位论文, 中国林业科学研究院, 2014. 13 Wei P L, Yang S M, Liu R, et al. Scientia Silvae Sinica, 2018, 54(1), 99 (in Chinese). 韦鹏练, 杨淑敏, 刘嵘, 等. 林业科学, 2018, 54(1), 99. 14 Li Y, Lu Y, Meng Q, et al. Advanced Energy Materials, 2019, 9(48), 1902852. 15 Sun N, Guan Z, Liu Y, et al. Advanced Energy Materials, 2019, 9(32), 1901351. 16 Zheng Y, Lu Y, Qi X, et al. Energy Storage Materials, 2019, 18, 269. 17 Guo S, Chen Y, Tong L, et al. Electrochimica Acta, 2022, 410, 140017. 18 Alvin S, Yoon D, Chandra C, et al. Journal of Power Sources, 2019, 430, 157. 19 Xu Z, Chen J, Wu M, et al. Electronic Materials Letters, 2019, 15, 428. 20 Sun D, Luo B, Wang H, et al. Nano Energy, 2019, 64, 103937. 21 Xiao L, Lu H, Fang Y, et al. Advanced Energy Materials, 2018, 8(20), 1703238. 22 Dahbi M, Kiso M, Kubota K, et al. Journal of Materials Chemistry A, 2017, 5(20), 9917. 23 Zhang T, Mao J, Liu X, et al. RSC Advances, 2017, 7(66), 41504. 24 Deng W, Cao Y, Yuan G, et al. ACS Applied Materials & Interfaces, 2021, 13(40), 47728. 25 Wang J, Yan L, Ren Q, et al. Electrochimica Acta, 2018, 291, 188. 26 Qatarneh A F, Dupont C, Michel J, et al. Journal of Environmental Chemical Engineering, 2021, 9(6), 106604. 27 Song Z, Di M, Zhang X, et al. Advanced Energy Materials, 2024, 15, 39. 28 Wang C C, Su W L. Surface and Coatings Technology, 2021, 415, 127125. 29 Saavedra Rios C M, Simonin L, Geyer A, et al. Energies, 2020, 13(14), 3513. 30 Shen F, Luo W, Dai J, et al. Advanced Energy Materials, 2016, 6(14). 31 Li H, Shen F, Luo W, et al. ACS Applied Materials & Interfaces, 2016, 8(3), 2204. 32 Rios C M S, Simone V, Simonin L, et al. Biomass and Bioenergy, 2018, 117, 32. 33 Wang X K, Shi J, Mi L W, et al. Rare Metals, 2020, 39, 1053. 34 Zhou S, Tang Z, Pan Z, et al. SusMat, 2022, 2(3), 357. 35 Wang Y, Feng Z, Zhu W, et al. Materials, 2018, 11(8), 1294. 36 Marino C, Cabanero J, Povia M, et al. Journal of the Electrochemical Society, 2018, 165(7), A1400. 37 Stevens D A, Dahn J R. Journal of the Electrochemical Society, 2001, 148(8), A803. 38 Harris P J F. Critical Rreviews in Solid State and Materials Sciences, 2005, 30(4), 235. 39 Bommier C, Surta T W, Dolgos M, et al. Nano Letters, 2015, 15(9), 5888. 40 Stevens D A, Dahn J R. Journal of the Electrochemical Society, 2000, 147(4), 1271. 41 Cao Y, Xiao L, Sushko M L, et al. Nano Letters, 2012, 12(7), 3783. 42 Li Y, Hu Y S, Titirici M M, et al. Advanced Energy Materials, 2016, 6(18), 1600659. 43 Bommier C, Surta T W, Dolgos M, et al. Nano Letters, 2015, 15(9), 5888. 44 Chen X, Tian J, Li P, et al. Advanced Energy Materials, 2022, 12(24), 2200886. 45 Yin X, Lu Z, Wang J, et al. Advanced Materials, 2022, 34(13), 2109282. 46 Franklin R E. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 1951, 209(1097), 196. 47 Ban L L, Crawford D, Marsh H. Journal of Applied Crystallography, 1975, 8(4), 415. 48 Townsend S J, Lenosky T J, Muller D A, et al. Physical Review Letters, 1992, 69(6), 921. 49 Harris P J F. International Materials Reviews, 1997, 42(5), 206. 50 Qiu S, Xiao L, Sushko M L, et al. Advanced Energy Materials, 2017, 7(17), 1700403. 51 Saurel D, Orayech B, Xiao B, et al. Advanced Energy Materials, 2018, 8(17), 1703268. 52 Li Y, Hu Y S, Titirici M M, et al. Advanced Energy Materials, 2016, 6(18), 1600659. 53 Zhao Y, Ye J, Zhang P, et al. Applied Surface Science, 2022, 602, 154336. 54 Olsson E, Cottom J, Cai Q. Small, 2021, 17(18), 2007652. 55 Buiel E R, George A E, Dahn J R. Carbon, 1999, 37(9), 1399. 56 Ghimbeu C M, Zhang B, de Yuso A M, et al. Carbon, 2019, 153, 634. 57 Li Y, Lu Y, Meng Q, et al. Advanced Energy Materials, 2019, 9(48), 1902852. 58 Wang P, Zhang G, Wei X Y, et al. Journal of the American Chemical Society, 2021, 143(9), 3280. 59 Kamiyama A, Kubota K, Igarashi D, et al. Angewandte Chemie International Edition, 2021, 60(10), 5114. 60 Schutjajew K, Giusto P, Härk E, et al. Carbon, 2021, 185, 697. 61 Zhang S, Sun N, Li X, et al. Energy Storage Materials, 2024, 66, 103183. 62 Li X, Sun N, Zhang S, et al. Journal of Materials Chemistry A, 2024, 12(20), 12015. 63 Zhao J, He X X, Lai W H, et al. Advanced Energy Materials, 2023, 13(18), 2300444. 64 Feng Y, Tao L, He Y, et al. Journal of Materials Chemistry A, 2019, 7(47), 26954. 65 Wang H, Maiyalagan T, Wang X. ACS Catalysis, 2012, 2(5), 781. 66 Jin Q, Li W, Wang K, et al. Journal of Materials Chemistry A, 2019, 7(17), 10239. 67 Qiao Y, Han R, Pang Y, et al. Journal of Materials Chemistry A, 2019, 7(18), 11400. 68 Li Z, Bommier C, Chong Z S, et al. Advanced Energy Materials, 2017, 7(18), 1602894. 69 Cheng D, Zhou X, Hu H, et al. Carbon, 2021, 182, 758. 70 Cheng B, Li X, Xu H, et al. ACS Applied Materials & Interfaces, 2022, 14(28), 31879. 71 Xue Y, Gao M, Wu M, et al. ChemElectroChem, 2020, 7(19), 4010. 72 Qiu G, Ning M, Zhang M, et al. Carbon, 2023, 205, 310. 73 Xie F, Xu Z, Jensen A C S, et al. Advanced Functional Materials, 2019, 29(24), 1901072. 74 Jing W, Wang M, Li Y, et al. Electrochimica Acta, 2021, 391, 139000. 75 Zhang W, Huang Z, Alshareef H N, et al. Carbon Research, 2024, 3(1), 28. 76 Wang Y, Yi Z, Xie L, et al. Advanced Materials, 2024, 2401249. 77 Chen C, Huang Y, Zhu Y, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(3), 1497. 78 Chen L, Bai L, Yeo J, et al. ACS Applied Materials & Interfaces, 2020, 12(24), 27499. 79 Wang H, Sun F, Qu Z, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(22), 18554. 80 Zhang T, Zhang T, Wang F, et al. Journal of Energy Chemistry, 2024, 96, 472. 81 Aristote N T, Liu C, Deng X, et al. Journal of Electroanalytical Chemistry, 2022, 923, 116769. 82 Alvin S, Chandra C, Kim J. Chemical Engineering Journal, 2020, 391, 123576. 83 Ding J, Zhang Y, Huang Y, et al. Journal of Alloys and Compounds, 2021, 851, 156791. 84 Wu X S, Dong X L, Wang B Y, et al. Renewable Energy, 2022, 189, 630.