Please wait a minute...
材料导报  2025, Vol. 39 Issue (20): 24090241-13    https://doi.org/10.11896/cldb.24090241
  无机非金属及其复合材料 |
预氧化在高性能钠离子电池用硬炭制备改性中发挥的作用
惠功领1, 张晋豪1, 解炜1, 辛智1,2, 毛昳萱3,4, 陈成猛3,*
1 中煤华利能源控股有限公司,北京 100020
2 中煤华利新疆炭素科技有限公司,新疆 哈密 839200
3 中国科学院山西煤炭化学研究所,太原 030001
4 中国科学院大学化学工程学院,北京 100049
The Role of Pre-oxidation in the Preparation and Modification of Hard Carbon for High-performance Sodium-ion Batteries
HUI Gongling1, ZHANG Jinhao1, XIE Wei1, XIN Zhi1,2, MAO Yixuan3,4, CHEN Chengmeng3,*
1 China Coal Huali Energy Holdings Corporation Ltd., Beijing 100020, China
2 China Coal Huali Xinjiang Carbon Technology Corporation Ltd., Hami 839200, Xinjiang, China
3 Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
4 School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
下载:  全 文 ( PDF ) ( 36005KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钠离子电池因其优异的安全性能以及低成本等优势,已成为下一代高效储能体系的首选。硬炭作为其唯一可商业化的负极材料,具有高首圈库仑效率以及循环稳定性好等优势,是通过对各类前驱体进行一系列的改性处理合成的。在众多改性手段中,预氧化处理由于简便高效,是制备高性能硬炭的有效前处理策略,包括气相氧化、液相氧化、固相氧化等形式。然而,不同硬炭前驱体的复杂分子结构对应不同的氧化机制,不清晰的分子结构演变过程以及其对硬炭结构的作用机制阻碍了高性能硬炭的设计。本文聚焦不同的硬炭前驱体经过预氧化合成硬炭过程中的结构演变,并且详细论述了预氧化对硬炭结构演变的几种作用机制,从矿物质类、生物质类以及合成大分子类这三类常见的硬炭前驱体入手综述了预氧化在高性能钠离子电池用硬炭制备改性中发挥的作用,对不同分子结构预氧化方式的选择提供了一定的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
惠功领
张晋豪
解炜
辛智
毛昳萱
陈成猛
关键词:  锂/钠离子电池  硬炭  预氧化  结构演变    
Abstract: Sodium-ion batteries have become the preferred choice for next-generation high-efficiency energy storage systems due to advantages such as excellent safety performance as well as low cost. Hard carbon, as its unique commercially available anode material with benefits such as high first efficiency and good cycling stability, is synthesized from a series of modification treatments through precursors. Among the numerous modification means, pre-oxidation treatment is an effective pretreatment strategy for the preparation of high-performance hard carbon due to its simplicity and high efficiency, including gas-phase oxidation, liquid-phase oxidation, solid-phase oxidation, and other forms. However, due to the complex molecular structures of different hard carbon precursors corresponding to different oxidation mechanisms, the unclear molecular structure evolution and its mechanism of action on the hard carbon structure hinder the design of high-performance hard carbon. In this review, we focus on the evolution of different hard carbon precursors in the process of synthesizing hard carbon through preoxidation, and discuss in detail several mechanisms of preoxidation on the structural evolution of hard carbon. And we review the role of preoxidation in the preparation and modification of hard carbon for high-performance sodium-ion batteries from the perspective of three common hard carbon precursors, namely, mineral, biomass and synthetic molecules, which provides some references to the selection of preoxidation modes of different molecular structures.
Key words:  lithium/sodium ion batteries    hard carbon    peroxidation    structural evolution
发布日期:  2025-10-27
ZTFLH:  O613.71  
基金资助: 国家重点研发计划 (2022YFB4101600);中煤-国科-煤化所联合企业项目(20241CS012)
通讯作者:  *陈成猛,博士,中国科学院山西煤炭化学研究所研究员、博士研究生导师。主要从事先进炭材料与储能器件研究。chencm@sxicc.ac.cn   
作者简介:  惠功领,博士,中煤华利能源控股有限公司党委副书记、总经理。目前主要从事煤基炭材料相关工作。
引用本文:    
惠功领, 张晋豪, 解炜, 辛智, 毛昳萱, 陈成猛. 预氧化在高性能钠离子电池用硬炭制备改性中发挥的作用[J]. 材料导报, 2025, 39(20): 24090241-13.
HUI Gongling, ZHANG Jinhao, XIE Wei, XIN Zhi, MAO Yixuan, CHEN Chengmeng. The Role of Pre-oxidation in the Preparation and Modification of Hard Carbon for High-performance Sodium-ion Batteries. Materials Reports, 2025, 39(20): 24090241-13.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090241  或          https://www.mater-rep.com/CN/Y2025/V39/I20/24090241
1 Rashidi N A, Yusup S. Journal of CO2 Utilization, 2016, 13, 1.
2 Jin H Y, Zhou K K, Ji Z J, et al. Friction, 2020, 8(4), 684.
3 Le N D, Trogen M, Ma Y B, et al. Carbohydrate Polymers, 2020, 250, 116918.
4 Mitoma N, Yano Y, Ito H, et al. ACS Applied Nano Materials, 2019, 2, 4825.
5 Cheng D J, Zhou X Q, Hu H Y, et al. Carbon, 2021, 182, 758.
6 Niu W J, Ren L N, Deng J M, et al. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(19), 221 (in Chinese).
牛文娟, 任鲁娜, 邓继猛, 等. 农业工程学报, 2023, 39(19), 221.
7 Gao Z Y, Zhang W J. Journal of Guizhou University, Natural Science Edition, 2018, 35(6), 7 (in Chinese).
高志勇, 张晚佳. 贵州大学学报, 自然科学版, 2018, 35(6), 7.
8 Guo D D. Preparation and investigation of pre-oxidized polyacrylonitrile based carbon fibers modified with hydroxylammonium chloride. Master’s Thesis, Wuhan Textile University, China, 2013 (in Chinese).
郭丹丹. 聚丙烯腈基碳纤维改性、预氧化工艺及其机理的探讨. 武汉纺织大学, 硕士学位论文, 2013.
9 Li X J, Luo Q H, Zhu Y J, et al. Science in China (Series B), 2001(1), 72 (in Chinese).
李小佳, 罗倩华, 朱一钧, 等. 中国科学(B辑化学), 2001(1), 72.
10 Han. X X. Shanghai Textile Science & Technology, 2022, 50(8), 26 (in Chinese).
韩笑笑. 上海纺织科技, 2022, 50(8), 26.
11 Sieira P, Guimarães C, Braga A, et al. Journal of Industrial and Engineering Chemistry, 2024, 136, 465.
12 Goikolea E, Palomares V, Wang S, et al. Advanced. Energy Materials, 2020, 10(44), 2002055.
13 Sarkar S, Roy S, Hou Y, et al. Chemistry Sustainability Energy Materials, 2021, 14(18), 3693.
14 Chayambuka K, Mulder G, Danilov D L, et al. Advanced Energy Materials, 2018, 8(16), 1800079.
15 Zhou H Y, Song Y H, Zhang B Y. Energy Storage Materials, 2024, 71, 103645.
16 Ghimbeu C M, Beda A, Réty B, et al. Advanced Energy Materials, 2024, 14, 2303833.
17 Huang G, Zhang H, Gao F, et al. Carbon, 2024, 228, 119354.
18 Lou Z J, Wang H, Wu D, et al. Fuel, 2022, 310, 122072.
19 Zhao G X, Xu T Q, Zhao Y M, et al. Energy Storage Materials, 2024, 67, 103282.
20 Lu Y X, Zhao C L, Qi X G, et al. Advanced Energy Materials, 2018, 8, 1800108.
21 Daher N, Huo D, Davoisne C, et al. ACS Applied. Energy Materials, 2020, 3, 6501.
22 Zhao P Y, Tang J J, Wang C Y, Journal of Solid State Electrochemistry, 2017, 21, 555.
23 Guo H Y, Li Y Y, Wang C L, et al. New Carbon Materials, 2021, 36(6), 1073.
24 Yuan R L, Dong Y, Hou R Y, et al. 2023, 454, 140148.
25 Xu R, Yi Z L, Song M X, et al. Carbon, 2023, 206, 94.
26 Wu J R, Yang T, Song Y, et al. Carbon, 2024, 221, 118902.
27 Zhang X F, Yi Z L, Tian Y R, et al. Carbon, 2024, 226, 119165.
28 Wang J, Yan L, Liu B H, et al. Chinese Chemical Letters, 2023, 34(4), 107526.
29 Qi Y R, Lu Y X, Liu L L, et al. Energy Storage Materials, 2020, 26, 577.
30 Zhang T, Yang L, Yan X, et al. Small, 2018, 14(47), 1802444.
31 Zhu H, Luo W, Ciesielski P N, et al. Chemical Review, 2016, 116(16), 9305.
32 Zhou J, Chang C, Zhang R, et al. Macromolecular Bioscience, 2007, 7(6), 804.
33 Yamamoto H, Muratsubaki S, Kubota K, et al. Journal of Materials Chemistry A, 2018, 6(35), 16844.
34 Mao Y X, Yi Z L, Xie L J, et al. Energy Storage Materials, 2024, 73, 103845.
35 Wen J H, Yin Y, Peng X F, et al. Cellulose, 2019, 26, 2699.
36 Shen F, Zhu H L, Luo W, et al. ACS Applied Materials & Interfaces, 2015, 7, 23291.
37 Zhao S, Wang C Y, Chen M M, et al. New Carbon Materials, 2010, 25(6), 438.
38 Lu Y X, Zhao C L, Qi X G, et al. Advanced Energy Materials, 2018, 8 (27), 6.
39 Du Y F, Sun G H, Li Y, et al. Carbon, 2021, 178, 243.
40 Wei Z, Zhao H X, Niu Y B, et al. Materials Chemistry Frontiers, 2021, 5(10), 3911.
41 Liu Y, Li K, Sun G, et al. Journal of Physics and Chemistry of Solids, 2010, 71(4), 453.
42 Zhang G F, Zhang L J, Ren Q J, et al. ACS Applied Materials & Interfaces, 2021, 13(27), 31650.
43 Qian Y, Jiang S, Li Y, et al. Advanced Energy Materials, 2019, 9, 1901676.
44 Ji L C, Zhao Y, Cao L J, et al. Journal of Materials Chemistry A, 2023, 11, 26727.
45 Guan T T, Zhang G L, Zhao J H, et al. Fuel, 2019, 242(15), 184.
[1] 陈洋, 李增祎, 吴智, 邓承继, 娄晓明, 李勇庆, 谭嘉琳, 丁军, 余超. 催化剂添加量和温度对催化氮化制备低碳MgO-C耐火材料显微结构演变的影响[J]. 材料导报, 2025, 39(8): 24030031-5.
[2] 郑惠泽, 何建丽, 高晨鑫, 章海明, 向雨欣. WE43镁合金温热压缩下织构演变及再结晶行为[J]. 材料导报, 2025, 39(5): 24020054-7.
[3] 刘冬旭, 宋皓炜, 刘鹏, 姚青荣, 王仲民, 邓健秋. 天然生物聚合物衍生硬炭材料的微观结构与储钠性能[J]. 材料导报, 2025, 39(16): 24070125-6.
[4] 陈意高, 姚熹, 王凯杰, 王坤杰, 张光喜. C/C复合材料表面超高温陶瓷涂层的快速成型及其烧蚀性能[J]. 材料导报, 2025, 39(12): 24050007-5.
[5] 季雪梅, 郝驰, 朱秀梅, 苏江滨, 何祖明, 唐斌, 朱贤方. 二硫化钼在电子束辐照下的缺陷结构演变及其物理机制研究进展[J]. 材料导报, 2024, 38(3): 22070109-11.
[6] 舒琦琪, 连斐, 梁陈利, 张庆堂. 锂离子电池硬炭负极的储锂机理及储锂性能优化进展[J]. 材料导报, 2024, 38(13): 23050097-10.
[7] 王鹏飞, 梁明, 贾佳林, 马小波, 徐晓燕. 脉冲磁体用高强高导Cu-Nb复合线材的研究进展[J]. 材料导报, 2023, 37(8): 21120237-8.
[8] 易家俊, 左晓宝, 黎亮, 邹欲晓. 水泥水化过程的概率模型及其微结构演变的数值模拟[J]. 材料导报, 2023, 37(18): 22040014-7.
[9] 张林伟, 余玖明, 宁先进, 王全胜. 预氧化真空度对冷喷涂CoNiCrAlY涂层高温氧化行为的影响[J]. 材料导报, 2022, 36(17): 21030092-5.
[10] 王官充, 冯拉俊. Er含量对FeSiB合金结构演变的影响[J]. 材料导报, 2020, 34(2): 2088-2092.
[11] 张文沛, 李欢欢, 胡志力, 秦训鹏. 车用轻量化铝合金材料本构关系研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 85-89.
[1] Guang MA,Xin CHEN,Licheng LU,Dongqun XIN,Li MENG,Hao WANG,Ling CHENG,Fuyao YANG. Monte Carlo Simulation of the Evolution of Goss Texture in Secondary Recrystallization of Thin Gauge Grain Oriented Silicon Steel[J]. Materials Reports, 2018, 32(2): 313 -315 .
[2] WANG Tiantian, XU Mengjia, XU Jijin, YU Chun, LU Hao. Influence of Second Welding Thermal Cycle on Reheat Cracking Sensitivity of CGHAZ in T23 Steel[J]. Materials Reports, 2017, 31(12): 56 -59 .
[3] XIE Jiale, YANG Pingping, LI Chang Ming. Stable and High-efficient α-Fe2O3 Based Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics[J]. Materials Reports, 2018, 32(7): 1037 -1056 .
[4] YANG Shicong, YAO Guowen, ZHANG Jinquan, SHI Kang. The Corrosion Fatigue Characteristic of Steel Strand Experiencing an Artificial Accelerated Salt Fog Ageing[J]. Materials Reports, 2018, 32(12): 1988 -1993 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] LI Xiuli, TIE Shengnian. Effect of Quick-dissolving and High-viscosity Carboxymethyl Cellulose Sodium on Properties of Glauber’s Salt-based Composites Phase Change Energy Storage Materials with Different Phase Transition Temperature Gradient[J]. Materials Reports, 2018, 32(22): 3848 -3852 .
[7] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[8] REN Xiuxiu, ZHU Yiju, ZHAO Shengxiang, HAN Zhongxi, YAO Lina. The Relationship Between Micromechanical Property and Friction Property of Four Kinds of Energetic Crystals[J]. Materials Reports, 2019, 33(z1): 448 -452 .
[9] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[10] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed