Please wait a minute...
材料导报  2025, Vol. 39 Issue (20): 24090224-8    https://doi.org/10.11896/cldb.24090224
  高分子与聚合物基复合材料 |
隔热疏水Co2+-单宁酸骨架修饰的rGO气凝胶吸波材料研究
孟利鹏, 程金波*, 黄浩然, 李辉, 李东, 王犁, 武元鹏*, 赵春霞, 来婧娟
西南石油大学新能源与材料学院,成都 610500
Heat-insulating and Hydrophobic Co2+-Tannic Acid Framework Decorated rGO Aerogel for Microwave Absorption
MENG Lipeng, CHENG Jinbo*, HUANG Haoran, LI Hui, LI Dong, WANG Li, WU Yuanpeng* , ZHAO Chunxia, LAI Jingjuan
School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
下载:  全 文 ( PDF ) ( 33142KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 设计宽频、强吸收的多功能电磁吸波材料是下一代通信技术的发展趋势。还原氧化石墨烯(rGO)气凝胶具有丰富的多孔结构、低密度、优异的导电网络,被广泛用于吸波材料研究。但其单独使用时通常存在阻抗不匹配的问题,需要与其他材料复合使用。金属-多酚骨架来源丰富、环境友好、价格低廉,还具有很强的粘附能力和丰富的偶极极化基团,可以增加rGO的粗糙度并改善其吸波性能。本工作通过原位生长和水热还原法将Co2+-单宁酸(Co2+-TA)纳米棒自组装到rGO骨架中,再通过冷冻干燥法构建多孔结构。由于Co2+-TA纳米棒和多孔结构的存在,rGO的阻抗匹配和吸波性能大大提高。rGO/Co2+-TA气凝胶表现出强的吸波性能,在添加量仅为8%(质量分数)时实现了-64.21 dB的最小反射损耗和6.16 GHz的有效吸收带宽。其优异的吸波性能可归因于多孔结构的多次反射和散射、rGO骨架适中的电阻损耗以及Co2+-TA纳米棒与rGO片层之间的界面极化损耗和偶极极化损耗。此外,Co2+-TA纳米棒修饰的rGO气凝胶具有低密度(0.03 g/cm3)、优异的疏水性能(水接触角139.4°)和隔热性能(温度差为64 ℃)。本工作为多功能吸波材料的设计合成提供了思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟利鹏
程金波
黄浩然
李辉
李东
王犁
武元鹏
赵春霞
来婧娟
关键词:  rGO气凝胶  超强吸收  隔热  金属-多酚骨架  吸波    
Abstract: The design of multifunctional electromagnetic wave-absorbing materials with strong absorption capacity and wide absorption bandwidth is the trend of the next-generation communication technology. Reduced graphene oxide (rGO) aerogels have been widely used in electromagnetic wave-absorbing research due to the porous structure, low density and excellent conductive network. However, pure rGO aerogel shows the problem of impedance mismatching, which is usually used with other materials. Metal-polyphenol farmwork has the advantages of abundant sources, environmental friendliness, and low cost. It also has strong adhesion ability and abundant dipole polarization groups, which can increase the roughness of rGO and improve its electromagnetic wave absorption performance. In this work, Co2+-tannic acid (Co2+-TA) nanorods were assembled into rGO skeleton by in-situ growth and hydrothermal reduction, and then the porous structures were constructed by freeze-drying. The prepared rGO/Co2+-TA aerogels exhibit strong wave-absorbing properties, achieving a minimum reflection loss of -64.21 dB and an effective absorption bandwidth of 6.16 GHz at a filling ratio of only 8wt%. The excellent wave-absorption performance can be attributed to the multiple reflections and scattering of the porous structure, the moderate resistance loss of the rGO skeleton, and the interfacial polarization loss and dipole polarization loss of the Co2+-TA nanorods. In addition, the Co2+-TA nanorod-modified rGO aerogel showed low density (0.03 g/cm3), hydrophobicity (water contact angle: 139.4°), and thermal insulation (temperature difference of 64 ℃). This work provides ideas for the design and synthesis of multifunctional and efficient wave-absorbing materials.
Key words:  rGO aerogel    ultra-high microwave absorption    heat insulation    metal-polyphenol framework    microwave absorption
发布日期:  2025-10-27
ZTFLH:  TB34  
基金资助: 四川省自然科学基金(2024NSFSC1038);西南石油大学自然科学“启航计划”(2022QHZ025)
通讯作者:  *程金波,博士,西南石油大学新能源与材料学院讲师、硕士研究生导师。目前主要从事吸波材料、储能材料研究。chengjinbo666888@163.com
武元鹏,博士,西南石油大学新能源与材料学院教授、博士研究生导师。目前主要从事油气资源转换利用材料、油气资源高效利用功能高分子和纳米材料研究。ypwu@swpu.edu.cn   
作者简介:  孟利鹏,西南石油大学新能源与材料学院硕士研究生,在程金波老师的指导下开展多孔碳基吸波材料的制备及其性能研究。
引用本文:    
孟利鹏, 程金波, 黄浩然, 李辉, 李东, 王犁, 武元鹏, 赵春霞, 来婧娟. 隔热疏水Co2+-单宁酸骨架修饰的rGO气凝胶吸波材料研究[J]. 材料导报, 2025, 39(20): 24090224-8.
MENG Lipeng, CHENG Jinbo, HUANG Haoran, LI Hui, LI Dong, WANG Li, WU Yuanpeng , ZHAO Chunxia, LAI Jingjuan. Heat-insulating and Hydrophobic Co2+-Tannic Acid Framework Decorated rGO Aerogel for Microwave Absorption. Materials Reports, 2025, 39(20): 24090224-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090224  或          https://www.mater-rep.com/CN/Y2025/V39/I20/24090224
1 Shi S, Mou P, Wang D, et al. Journal of Materiomics, 2024, 10(1), 124.
2 Xu P. The design and performance investigation of carbon-based electromagnetic wave absorbers. Ph. D. Thesis, Jilin University, China, 2023 (in Chinese).
徐攀. 碳基电磁波吸收材料的设计与性能研究. 博士学位论文, 吉林大学, 2023.
3 Cheng J B, Zhao H B, Li M E, et al. Materials China, 2019, 38(9), 9 (in Chinese).
程金波, 赵海波, 李蒙恩, 等. 中国材料进展, 2019, 38(9), 9.
4 Cheng J B, Meng L P, Zhao H B, et al. ACS Applied Nano Materials, 2023, 6(22), 20931.
5 He Z, Sun R, Xu H, et al. Carbon, 2024, 219, 118853.
6 Xiong X, Zhang H, Lv H, et al. Carbon, 2024, 219, 118834.
7 Yu J, Luo H, Lv S, et al. Advanced Electronic Materials, 2025, 11, 2400265.
8 Liu P, Gao S, Zhang G, et al. Advanced Functional Materials, 2021, 31(27), 2102812.
9 Cheng Y, Sun X, Yang S, et al. Chemical Engineering Journal, 2023, 452, 139376.
10 Shu Y, Zhao T, Abdul J, et al. Chemical Engineering Journal, 2023, 471, 144535.
11 Wu Y, Zhao Y, Zhou M, et al. Nano-Micro Letters, 2022, 14(1), 1.
12 Xu J, Zhang X, Zhao Z, et al. Small, 2021, 17(33), 2102032.
13 Chao M, Chu N, Zhang B, et al. Composites Communications, 2024, 46, 101837.
14 Zhang X, Zheng Q, Chen Y, et al. Carbon, 2024, 219, 118823.
15 Li H, Bi S, Cai J, et al. Carbon, 2024, 223, 119005.
16 Cao K, Yang X, Zhao R, et al. ACS Applied Materials & Interfaces, 2023, 15(7), 9685.
17 Li H, Shu X, Tong P, et al. Small, 2021, 17, 2102002.
18 Kim J H, Oh J Y, Shin Y E, et al. Carbon, 2019, 144, 402.
19 Liu W, Jia K, Yao T, et al. ACS Applied Materials & Interfaces, 2024, 16, 27724.
20 Cheng J B, Wang Y Q, Zhang A N, et al. Carbon, 2021, 183, 205.
21 Cao K, Yang X, Zhao R, et al. ACS Applied Materials & Interfaces, 2023, 15(7), 9685.
22 Yin Y, Liu X, Wei X, et al. ACS Applied Materials & Interfaces, 2016, 8(50), 34686.
23 Shen H, Ju C, Wang J, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 703, 135232.
24 Gu W, Tan J, Chen J, et al. ACS Applied Materials & Interfaces, 2020, 12(25), 28727.
25 Yang S. Research on regulation of impedance matching of porous carbon-based electromagnetic absorbing composites. Ph. D. Thesis, Harbin Institute of Technology, China, 2023 (in Chinese).
杨爽. 多孔碳基吸波复合材料阻抗匹配调控研究. 博士学位论文, 哈尔滨工业大学, 2023.
26 Cheng J B, Zhao H B, Cao M, et al. ACS Applied Materials & Interfaces, 2020, 12(23), 26301.
27 Wu Y, Shu R, Shan X, et al. Journal of Alloys and Compounds, 2020, 817, 152766.
28 Zhong X, He M, Zhang C, et al. Advanced Functional Materials, 2024, 34(19), 2313544.
29 Ma C, Wang Y, Zhang C, et al. Applied Surface Science, 2023, 637, 157913.
30 Li Q, Zhang Z, Qi L, et al. Advanced Science, 2019, 6(8), 1801057.
31 Wu L, Shu R, Zhang J, et al. Journal of Colloid and Interface Science, 2022, 608, 1212.
[1] 程亚杰, 许子琛, 王强, 魏浩, 孙希平, 王林. 一步法制备三维杆状聚吡咯及其吸波性能研究[J]. 材料导报, 2025, 39(8): 24010018-6.
[2] 李艺, 刘敬肖, 史非, 杨大毅, 田紫薇, 王美玉, 万佳翔, 陈超凡, 吕振杰. 基于草酸热还原制备CsxWO3用于高效近红外屏蔽薄膜研究[J]. 材料导报, 2025, 39(7): 23060135-8.
[3] 蒋曜年, 刘欢, 钟镇涛, 何泽乾, 毛卫国, 戴翠英, 张有为, 刘平桂. SiCN@Fe复合吸波涂层高温原位拉伸测试分析[J]. 材料导报, 2025, 39(3): 23050156-5.
[4] 陈学烨, 杨斌, 陈志, 苏菁. 隔热涂层表面高温气流冲击效应的3D数值模拟[J]. 材料导报, 2025, 39(18): 24080110-6.
[5] 王伟超, 汪刘应, 刘顾, 黄洁, 葛超群. 气凝胶吸波材料的研究进展[J]. 材料导报, 2025, 39(18): 24090084-9.
[6] 翁兴媛, 秦英, 马志军, 郑云生, 李卓敏, 幸会玲. 不同钙、铬比例的M型铁氧体的吸波性能研究[J]. 材料导报, 2025, 39(17): 24060059-7.
[7] 崔楷敏, 李端, 李学超, 刘荣军, 王衍飞. 耐高温Al-Si-O结构功能一体化材料研究进展[J]. 材料导报, 2025, 39(14): 24070084-10.
[8] 王志航, 白二雷, 刘俊良, 周俊鹏, 任彪. 碳纤维及碳纳米材料改性水泥基材料电磁屏蔽及吸波性能研究进展[J]. 材料导报, 2025, 39(13): 24030248-9.
[9] 王成海, 韩昌报, 崔雅楠, 严辉, 蒋荃. 高孔隙率水化硅酸钙的合成及对水泥基复合材料保温隔热性能的影响[J]. 材料导报, 2025, 39(13): 24060010-7.
[10] 杜云亮, 杜雪岩, 王胜, 申莹莹, 李彬. 铅银渣中选择性提锌及配碳比对ZnO形貌和吸波性能的影响[J]. 材料导报, 2025, 39(10): 24030125-8.
[11] 李仁豪, 鲍艳, 赵海航. 聚酰亚胺类复合隔热材料的研究进展[J]. 材料导报, 2025, 39(10): 24030238-10.
[12] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[13] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[14] 成鑫磊, 穆锐, 孙涛, 刘元雪, 胡志德, 蒋昊洋. 固液相变材料的封装制备及在建筑领域的研究进展[J]. 材料导报, 2024, 38(5): 23080048-15.
[15] 吴子豪, 苏荣华, 马超, 解帅, 冀志江, 王英翔, 王静. 轻骨料水泥基多功能吸波材料的制备及有限元分析[J]. 材料导报, 2024, 38(5): 23080253-7.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed