Please wait a minute...
材料导报  2025, Vol. 39 Issue (18): 24080110-6    https://doi.org/10.11896/cldb.24080110
  金属与金属基复合材料 |
隔热涂层表面高温气流冲击效应的3D数值模拟
陈学烨1, 杨斌1,*, 陈志1, 苏菁2,*
1 西北大学化工学院,西安 710127
2 西安长峰机电研究所,西安 710065
Three-dimensional Numerical Simulation of High Temperature Airflow Impact Effect on Thermal Insulation Coating Surface
CHEN Xueye1, YANG Bin1,*, CHEN Zhi1, SU Jing2,*
1 School of Chemical Engineering, Northwest University, Xi'an 710127, China
2 Xi'an Changfeng Institute of Mechanical and Electrical, Xi'an 710065, China
下载:  全 文 ( PDF ) ( 22732KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在实际飞行器复杂的气动环境中,涂层不仅受到气流摩擦产生的高温烧蚀,还受到高速大气的冲击作用,这使得动态气流冲击对涂层隔热效果及表层损伤的影响与静态过程有显著差异。基于FLUENT软件对不同倾角的隔热涂层的高温气流冲击过程进行了数值模拟,分析了高速高温燃气冲击下涂层和钢板基底的温度和应力变化。研究表明,涂层的隔热效果与其倾角紧密相关,其中倾角为45°时,涂层和钢板的表面平均温差最大,隔热效果最佳。应力分析表明,随着倾角增大,试件表面的平均压应力显著增加,倾角为90°时的平均压应力是30°时的6.72倍,高压应力区域向上侧扩散并占据大部分区域,可能对涂层的黏附性能产生破坏。同时,涂层表面的剪应力分布与压应力相反,虽然数值较小,但是对涂层的破坏作用不可忽视,尤其是在较小倾角下表现得更加明显。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈学烨
杨斌
陈志
苏菁
关键词:  隔热涂层  高温气流  动态冲击  热力学过程  数值模拟    
Abstract: In the complex aerodynamic environment of actual aircraft, the coating is subjected to a combination of high-temperature ablation generated by airflow friction and the impact effect of high-speed atmosphere. This makes the effect of dynamic airflow impact on the coating's thermal insulation effect and surface damage significantly different from the static process. In this work, FLUENT is used to simulate the thermal insulation coating with different inclination angles in the process of high-temperature gas impact, and analyze the temperature and stress changes of the coating and steel plate substrate under the impact of high-speed and high-temperature gas. It is found that the thermal insulation effect of the coating is closely related to its inclination angle, in which the average temperature difference between the surface of the coating and the steel plate is the largest and the thermal insulation effect is the best when the inclination angle is 45°. Stress analysis shows that the average compressive stress on the surface of the specimen increases significantly with the increase of inclination angle, and the compressive stress at 90° inclination angle is 5.72 times higher than that at 30°, and the high-pressure stress region spreads to the upper side and occupies most of the area, which may damage the adhesion performance of the coating. Meanwhile, the distribution of shear stress on the surface of the coating is opposite to the compressive stress, although the value is small, the damaging effect on the coating cannot be neglected, especially at lower inclination angle, which is more obvious.
Key words:  thermal insulation coating    high temperature airflow    dynamic impact    thermodynamics process    numerical simulation
出版日期:  2025-09-25      发布日期:  2025-09-11
ZTFLH:  TQ05  
  TH3  
基金资助: 陕西省重点研发计划项目(2021GY-150);陕西省重点科技创新团队项目(2022TD-33)
通讯作者:  *杨斌,博士,西北大学化工学院教授、硕士研究生导师。目前主要从事环境流体力学、多相流、过程流体机械及装置等方面的研究。binyang@nwu.edu.cn;
苏菁,硕士,西安长峰机电研究所高级工程师。目前主要从事耐高温抗烧蚀复合材料等方面的研究。wormcat007@163.com   
作者简介:  陈学烨,西北大学化工学院硕士研究生,在杨斌教授的指导下进行研究。目前主要研究领域为流体力学、化工过程机械。
引用本文:    
陈学烨, 杨斌, 陈志, 苏菁. 隔热涂层表面高温气流冲击效应的3D数值模拟[J]. 材料导报, 2025, 39(18): 24080110-6.
CHEN Xueye, YANG Bin, CHEN Zhi, SU Jing. Three-dimensional Numerical Simulation of High Temperature Airflow Impact Effect on Thermal Insulation Coating Surface. Materials Reports, 2025, 39(18): 24080110-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080110  或          https://www.mater-rep.com/CN/Y2025/V39/I18/24080110
1 Natali M, Kenny J M, Torre L. Progress in Materials Science, 2016, 84, 192.
2 Le V T, Ha N S, Goo N S. Composites Part B, Engineering, 2021, 226, 109301.
3 Ji M M, Zhu S Z, Ma Z. Surface Technology, 2021, 50(1), 253(in Chinese).
姬梅梅, 朱时珍, 马壮. 表面技术, 2021, 50(1), 253.
4 Uyanna O, Najafi H. Acta Astronautica, 2020, 176, 341.
5 Lyu D S, Song G M, Zhou Y, et al. Journal of Solid Rocket Technology, 2002(2), 67 (in Chinese).
吕德生, 宋桂明, 周玉, 等. 固体火箭技术, 2002(2), 67.
6 Lu T L, Feng J, Chong X Y. Chinese Journal of Rare Metals, 2024, 48(1), 50 (in Chines).
陆天龙, 冯晶, 种晓宇. 稀有金属, 2024, 48(1), 50.
7 Wu S, Zhao Y T, Wang L, et al. Material for Mechanical Engineering, 2023, 47(9), 94(in Chines).
吴硕, 赵远涛, 王亮, 等. 机械工程材料, 2023, 47(9), 94.
8 Wang Y H, Wang C H, You Y, et al. Materials Today Communications, 2023, 35, 105699.
9 Zhu W, Wang J W, Yang L, et al. Surface and Coatings Technology, 2017, 315, 443.
10 Xu Y, Liu J Y, Fan H, et al. Aerospace Material & Technology, 2022, 52(4), 44(in Chines).
徐莹, 刘峻瑜, 樊虎, 等. 宇航材料工艺, 2022, 52(4), 44.
11 Kadir A, Bég A O, El G M, et al. Heat Transfer—Asian Research, 2019, 48(6), 2302.
12 Wang F J. Computational fluid dynamics analysis—principles and appcations of CFD software, Tsinghua University Press, China, 2004, pp. 7 (in Chinese).
王福军. 计算流体动力学分析—CFD软件原理与应用, 清华大学出版社, 2004, pp. 7.
13 Gao F D, Wang D X, Wang H D, et al. Chinese Journal of Mechanical Engineering, 2018, 31(5), 127.
14 Roache P J. Annual review of Fluid Mechanics, 1997, 29, 123.
15 Karimia M, Akdogana G, Dellimoreb K H. Computers and Chemical Engineering, 2012, 43, 45.
[1] 王耀, 郑新颜, 黄伟, 吴应雄, 黄雅莹, 张恒春, 张峰. 超高性能混凝土-花岗岩石材界面的抗剪性能研究[J]. 材料导报, 2025, 39(6): 24010107-10.
[2] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[3] 李雷, 孙东旭, 柴玉莹, 谢飞, 吴明. 剥离涂层下含缺陷管道腐蚀规律的瞬态数值模拟研究[J]. 材料导报, 2025, 39(5): 23010094-9.
[4] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[5] 杨雨, 黄斌, 黄伟, 龚明子, 潘阿馨, 陈庆丰, 陈宝春, 韦建刚. UHPC中纤维间距折减效应试验与模拟研究[J]. 材料导报, 2025, 39(14): 24070154-8.
[6] 汪宙, 陈爽, 马宗涛, 张天豪, 李继文, 晁霞. 非均衡底吹对铁碳熔池废钢熔化行为影响的模拟研究[J]. 材料导报, 2025, 39(14): 24060048-8.
[7] 赵卫平, 刘英健, 生兆川, 程赛, 徐旸. 三维细观早龄期混凝土导热性能数值模拟[J]. 材料导报, 2025, 39(10): 24040083-10.
[8] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[9] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[10] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[11] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[12] 张天刚, 潘启越, 张志强, 曹思雨. 铝合金表面阳极氧化膜激光清洗机制分析[J]. 材料导报, 2024, 38(24): 23100128-10.
[13] 金浏, 杨健, 吴洁琼, 杜修力. 考虑混凝土细观非均质性的钢筋混凝土结构疲劳寿命预测概率模型[J]. 材料导报, 2024, 38(20): 23090009-8.
[14] 郑莲宝, 李旺, 王松伟, 徐勇, 宋鸿武. 基于场量传递的流动-传热-凝固过程耦合计算模型及其应用[J]. 材料导报, 2024, 38(20): 23080032-7.
[15] 邱飒蔚, 蒋家传, 叶拓, 张越, 雷贝, 王涛. AA7075-T6铝合金电阻点焊工艺参数优化研究[J]. 材料导报, 2024, 38(17): 23120177-8.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed