Please wait a minute...
材料导报  2025, Vol. 39 Issue (18): 24080157-8    https://doi.org/10.11896/cldb.24080157
  无机非金属及其复合材料 |
再生混凝土模型界面过渡区断裂行为与数值模拟
武军1, 丁亚红2,*, 郭猛2, 郭书奇2
1 新乡学院土木工程与建筑学院,河南 新乡 453003
2 河南理工大学土木工程学院,河南 焦作 454003
Fracture Behavior and Numerical Simulation of Modelled Interfacial Transition Zone in Recycled Aggregate Concrete
WU Jun1, DING Yahong2,*, GUO Meng2, GUO Shuqi2
1 School of Civil Engineering and Architecture, Xinxiang University, Xinxiang 453003, Henan, China
2 School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China
下载:  全 文 ( PDF ) ( 18868KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用三点弯曲梁法研究了水灰比和碳化骨料对再生混凝土(Recycled aggregate concrete,RAC)模型界面过渡区(Interfacial transition zone,ITZ)棱柱体试件(40 mm×40 mm×160 mm)断裂行为的影响规律;并基于内聚力模型,采用ABAQUS有限元软件研究了不同裂缝高度和界面强度对其断裂行为的影响规律。结果表明:模型ITZ断裂行为的荷载-位移曲线由上升直线段、上升曲线段、下降曲线段三个部分组成。随水灰比增大(0.40、0.45、0.50),模型ITZ的临界位移和最大荷载逐渐减小,而碳化骨料使得最大荷载分别提高64.40%、37.26%、32.02%。随裂缝高度增加(0、4、8、12、16 mm),荷载-位移曲线的临界位移逐渐增大,最大荷载和失稳韧度逐渐减小,并且这三者相邻裂缝高度间以及相邻界面强度间的变化百分比逐渐减小。随界面强度增大(0.6、1.2、2.8 MPa),这三者的变化趋势与随裂缝高度增大正好相反。本研究可为RAC力学性能与ITZ力学行为的关联机制研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
武军
丁亚红
郭猛
郭书奇
关键词:  界面过渡区  断裂行为  荷载-位移曲线  失稳韧度  碳化骨料  内聚力模型  ABAQUS    
Abstract: The effects of water-cement ratio and carbonated aggregate on the fracture behavior of modelled interfacial transition zone (ITZ) in recycled aggregate concrete (RAC) were investigated using the three-point bending beam method, the prism specimenswere prepared with the size of 40 mm×40 mm×160 mm. Based on the cohesive zone model, the influence of crack height and interface strength on its fracture behavior was studied using a finite element software(ABAQUS). The results show that the load-displacement curve for fracture behavior of modelled ITZ consists of the ascending straight line segment, the ascending curve segment, and the descending curve segment. As the water-cement ratio increase from 0.40 to 0.50, the critical displacement and maximum load of modelled ITZ gradually decrease, while carbonated aggregate led to an increase in the maximum load by 64.40%, 37.26%, 32.02% respectively. As the crack height increases from 0 mm to 16 mm, the critical displacement of the load-displacement curve gradually increases, while the maximum load and unstable toughness gradually decrease, and the increase ratio of these three indices gradually decreases between adjacent crack heights and interface strengths. By contrast, as the interface strength increases from 0.6 MPa to 2.8 MPa, the changing trends of these three indices were opposite to those of the crack height increase.
Key words:  interfacial transition zone (ITZ)    fracture behavior    load-displacement curve    unstable toughness    carbonated aggregate    cohesive zone model    ABAQUS
出版日期:  2025-09-25      发布日期:  2025-09-11
ZTFLH:  TU528.59  
基金资助: 国家自然科学基金(U1904188)
通讯作者:  *丁亚红,博士,河南理工大学土木工程学院教授、博士研究生导师。目前主要从事再生混凝土材料与结构等方面的研究。dingyahong@hpu.edu.cn   
作者简介:  武军,博士,新乡学院土木工程与建筑学院讲师。目前主要研究领域为再生混凝土力学性能与界面过渡区微观性能关联机制。
引用本文:    
武军, 丁亚红, 郭猛, 郭书奇. 再生混凝土模型界面过渡区断裂行为与数值模拟[J]. 材料导报, 2025, 39(18): 24080157-8.
WU Jun, DING Yahong, GUO Meng, GUO Shuqi. Fracture Behavior and Numerical Simulation of Modelled Interfacial Transition Zone in Recycled Aggregate Concrete. Materials Reports, 2025, 39(18): 24080157-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080157  或          https://www.mater-rep.com/CN/Y2025/V39/I18/24080157
1 Bahraq A A, Jose J, Shameem M, et al. Journal of Building Engineering, 2022, 55, 104713.
2 Ou-Yang K, Liu J H, Liu S H, et al. Resources, Conservation and Recycling, 2023, 188, 106717.
3 Lin D D, Wu J, Yan P P, et al. Construction and Building Materials, 2024, 422, 135783.
4 Zhan P M, Xu J, Wang J, et al. Journal of Cleaner Production, 2022, 375, 134116.
5 Tejas S, Pasla D. Construction and Building Materials, 2023, 387, 131620.
6 Gao S, Ban S L, Guo J, et al. Materials Reports, 2023, 37(11), 21090034(in Chinese).
高嵩, 班顺莉, 郭嘉, 等. 材料导报, 2023, 37(11), 21090034.
7 Huang Y, Hu X, Shi C J, et al. Materials Reports, 2023, 37(1), 21050009(in Chinese).
黄燕, 胡翔, 史才军, 等. 材料导报, 2023, 37(1), 21050009.
8 Fang G H, Chen J T, Dong B Q, et al. Journal of Building Engineering, 2023, 66, 105860.
9 Xu F W, Tian B, Xu G. Materials Reports, 2022, 36(4), 20100200(in Chinese).
徐福卫, 田斌, 徐港. 材料导报, 2022, 36(4), 20100200.
10 Thaue W, Iwanami M, Nakayama K, et al. Construction and Building Materials, 2024, 417, 135355.
11 Huang Y F, Zhang Y, Ma T, et al. Construction and Building Materials, 2024, 415, 135112.
12 Luo S R, Lin Q, Lin T W, et al. Construction and Building Materials, 2023, 397, 132386.
13 Wang C H, Xiao J Z, Zhang G Z, et al. Construction and Building Materials, 2016, 105, 307.
14 Choi H, Choi H, Lim M, et al. International Journal of Concrete Structures and Materials, 2016, 10(1), 87.
15 Ren X, Zhang L Y. Construction and Building Materials, 2018, 167, 749.
16 Zhan B J, Xuan D X, Poon C S, et al. Cement and Concrete Research, 2020, 136, 106175.
17 Liu Z, Peng H, Cai C S. Journal of Materials in Civil Engineering, 2015, 27(11), 4015024.
18 Xiao J Z, Li W G, Corr D J, et al. Cement and Concrete Research, 2013, 52, 82.
19 Alfano G L. Composites Science and Technology, 2006, 66(6), 723.
20 Chang X, Guo T F, Zhang S. Engineering Fracture Mechanics, 2020, 228, 106904.
21 Chang X, Zhao H B, Cheng L. Journal of Structural Geology, 2020, 141, 104213.
[1] 夏晋, 郑宇航, 汪雨青. 基于多尺度模型的混凝土有效电阻率与几何代表尺寸研究[J]. 材料导报, 2025, 39(4): 24020001-7.
[2] 薛刚, 刘毅, 牟一飞. 基于3D细观模型的混凝土单轴拉压应力应变关系影响因素研究[J]. 材料导报, 2025, 39(15): 24060161-8.
[3] 郭寅川, 樊鹏龙, 申爱琴, 戴晓倩, 姚超, 杨雪瑞, 李震南. 轮载-动水耦合作用下玄武岩纤维路面混凝土性能衰减及机理研究[J]. 材料导报, 2025, 39(13): 24010002-8.
[4] 崔潮, 李渊, 党颖泽, 王岚, 彭晖. 碱-矿渣-偏高岭土基地聚物与骨料的界面粘结机理[J]. 材料导报, 2025, 39(1): 23110101-8.
[5] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[6] 周兰, 李光奇, 安国升, 王云龙, 朱瑞彪, 钟云. CFRP螺旋铣孔成屑机制的三维微观有限元仿真研究[J]. 材料导报, 2024, 38(24): 23110010-7.
[7] 胡家宇, 徐菲, 钱文勋, 肖怀前, 葛津宇, 李嘉明. 涂覆时间对聚合物水泥基钢筋涂层粘接性能的影响机理[J]. 材料导报, 2024, 38(17): 22060053-4.
[8] 曹梦媛, 于素慧, 袁健, 王炜, 张少辉, 王艳. CO2养护煤矸石粗骨料性能研究[J]. 材料导报, 2024, 38(14): 23030104-8.
[9] 李辉, 郭润兰, 黄华, 黄晖阳. 基于扩展有限元方法的自愈微胶囊和基体力学性能适配的研究[J]. 材料导报, 2024, 38(13): 22100029-8.
[10] 冯春花, 崔卜文, 郭晖, 张文艳, 朱建平. 水泥浆-碳化协同增强再生混凝土骨料研究[J]. 材料导报, 2023, 37(21): 22060098-5.
[11] 栾利强, 文双寿, 余和德, 任俊颖. 碳纳米管改性沥青混合料低温裂缝扩展分析[J]. 材料导报, 2023, 37(20): 22030145-7.
[12] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[13] 朱丽华, 刘海林, 韩伟. 基于细观尺度的再生混凝土多相导热系数理论模型[J]. 材料导报, 2023, 37(12): 21110080-7.
[14] 高嵩, 班顺莉, 郭嘉, 邹传学, 宫尧尧. 硅灰对再生混凝土界面过渡区的影响[J]. 材料导报, 2023, 37(11): 21090034-7.
[15] 张龙飞, 谢浩, 冯吉利, 陈燕伟. 基于真实骨料的细观混凝土建模及数值模拟[J]. 材料导报, 2023, 37(10): 21080155-8.
[1] Guang MA,Xin CHEN,Licheng LU,Dongqun XIN,Li MENG,Hao WANG,Ling CHENG,Fuyao YANG. Monte Carlo Simulation of the Evolution of Goss Texture in Secondary Recrystallization of Thin Gauge Grain Oriented Silicon Steel[J]. Materials Reports, 2018, 32(2): 313 -315 .
[2] CHEN Jian, XU Hui. Research Progress of Graphene and Its Nanocomposites as Anodes for Lithium Ion Batteries[J]. Materials Reports, 2017, 31(9): 36 -44 .
[3] WANG Tiantian, XU Mengjia, XU Jijin, YU Chun, LU Hao. Influence of Second Welding Thermal Cycle on Reheat Cracking Sensitivity of CGHAZ in T23 Steel[J]. Materials Reports, 2017, 31(12): 56 -59 .
[4] XIE Jiale, YANG Pingping, LI Chang Ming. Stable and High-efficient α-Fe2O3 Based Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics[J]. Materials Reports, 2018, 32(7): 1037 -1056 .
[5] YANG Shicong, YAO Guowen, ZHANG Jinquan, SHI Kang. The Corrosion Fatigue Characteristic of Steel Strand Experiencing an Artificial Accelerated Salt Fog Ageing[J]. Materials Reports, 2018, 32(12): 1988 -1993 .
[6] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[7] LI Xiuli, TIE Shengnian. Effect of Quick-dissolving and High-viscosity Carboxymethyl Cellulose Sodium on Properties of Glauber’s Salt-based Composites Phase Change Energy Storage Materials with Different Phase Transition Temperature Gradient[J]. Materials Reports, 2018, 32(22): 3848 -3852 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] REN Xiuxiu, ZHU Yiju, ZHAO Shengxiang, HAN Zhongxi, YAO Lina. The Relationship Between Micromechanical Property and Friction Property of Four Kinds of Energetic Crystals[J]. Materials Reports, 2019, 33(z1): 448 -452 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed