Please wait a minute...
材料导报  2025, Vol. 39 Issue (13): 24010002-8    https://doi.org/10.11896/cldb.24010002
  无机非金属及其复合材料 |
轮载-动水耦合作用下玄武岩纤维路面混凝土性能衰减及机理研究
郭寅川*, 樊鹏龙, 申爱琴, 戴晓倩, 姚超, 杨雪瑞, 李震南
长安大学特殊地区公路工程教育部重点实验室,西安 710064
Performance Attenuation and Mechanism of Basalt Fibre Reinforced Concrete Under Coupling Effect of Fatigue Loading and Hydrodynamic Pressure
GUO Yinchuan*, FAN Penglong, SHEN Aiqin, DAI Xiaoqian, YAO Chao, YANG Xuerui, LI Zhennan
Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064, China
下载:  全 文 ( PDF ) ( 19038KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过轮载-动水耦合试验、扫描电镜(SEM)和压汞试验(MIP),探究了耦合作用下玄武岩纤维混凝土(BFRC)力学性能及微观结构演变规律,揭示了玄武岩纤维(BF)抑制力学性能衰减机理,并提出了BF对抗弯强度及相对动弹模量的影响系数。结果表明:耦合作用下,混凝土的力学性能呈现“上升-下降”的趋势。BF影响系数显示,BF对力学性能衰减的改善效果在耦合后期最显著。至耦合结束,BFRC抗弯强度和相对动弹模量衰减幅度较基准混凝土降低29.04%和41.7%。耦合0~60 000次,孔隙受到轮载补充压实,之后新孔不断产生,加速了混凝土孔结构“粗化”,多害孔占比呈线性上升,无害孔占比呈线性降低。BFRC孔隙率上升幅度较基准混凝土降低了35.91%。BFRC力学性能的衰减受孔隙率及无害孔的影响较大,其孔结构劣化过程分为压实、膨胀和贯通三个阶段。BF通过桥接裂缝以及提高裂缝复杂程度来延缓界面过渡区(ITZ)主裂缝的形成,进而缓解了BFRC力学性能的衰减。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭寅川
樊鹏龙
申爱琴
戴晓倩
姚超
杨雪瑞
李震南
关键词:  玄武岩纤维混凝土  路面工程  轮载-动水耦合作用  力学性能  孔结构  界面过渡区    
Abstract: Through fatigue load and coupling tests, as well as scanning electron microscope (SEM) and mercury intrusion pressure (MIP) analyses, the mechanical properties and microstructure evolution of basalt fiber reinforced concrete (BFRC)were investigated under the influence of coupling effects. The mechanism of basalt fiber (BF) inhibition of mechanical property attenuation was revealed, and the influence coefficients of BF on flexural strength and relative dynamic modulus were proposed. Results indicate that the mechanical properties of concrete under coupling conditions exhibit a “rising-declining” trend. The BF influence coefficients show that the improvement effect of BF on the decay of mechanical properties is most significant at the late stage of coupling. At the end of the coupling process, BFRC’s flexural strength, along with the relative dynamic modulus, decreased by 29.04% and 41.7%, respectively, compared to the reference concrete. During 0 to 60 000 cycles, compaction due to wheel load supplementation initially filled pores, followed by the generation of new pores, accelerating the “coarsening” of the concrete pore structure. The percentage of multi-hazardous pores increased linearly, while the percentage of harmless pores decreased linearly. The increase in BFRC porosity decreased by 35.91% compared to the baseline concrete. The decay of BFRC’s mechanical properties was significantly influenced by porosity and harmless pores. The relative dynamic modulus of BFRC decreased by 29.04% and 41.7% compared to the baseline concrete. The pore structure deterioration process involves three stages:compaction, expansion, and penetration. BF retards the formation of main cracks in the interfacial transition zone by bridging cracks and increasing crack complexity, thus mitigating the attenuation of BFRC’s mechanical properties.
Key words:  basalt fiber reinforced concrete    road engineering    fatigue loading and hydrodynamic pressure coupling effect    mechanical property    pore structure    interfacial transition zone
出版日期:  2025-07-10      发布日期:  2025-07-21
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52078050)
通讯作者:  *郭寅川,长安大学公路学院教授、博士研究生导师。长期从事路面结构、路面材料及预防性养护等方面研究工作。silver007007@163.com   
引用本文:    
郭寅川, 樊鹏龙, 申爱琴, 戴晓倩, 姚超, 杨雪瑞, 李震南. 轮载-动水耦合作用下玄武岩纤维路面混凝土性能衰减及机理研究[J]. 材料导报, 2025, 39(13): 24010002-8.
GUO Yinchuan, FAN Penglong, SHEN Aiqin, DAI Xiaoqian, YAO Chao, YANG Xuerui, LI Zhennan. Performance Attenuation and Mechanism of Basalt Fibre Reinforced Concrete Under Coupling Effect of Fatigue Loading and Hydrodynamic Pressure. Materials Reports, 2025, 39(13): 24010002-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010002  或          https://www.mater-rep.com/CN/Y2025/V39/I13/24010002
1 Li S B, Zhang H C, Sun L J.Journal of Tongji University (Natural Science), 2007, 35(7), 915(in Chinese).
李少波, 张宏超, 孙立军. 同济大学学报(自然科学版), 2007, 35(7), 915.
2 Liu K X, Zhang X, Wang Y B, et al.Construction & Building Materials, 2023, 377, 131125.
3 Li Z N, Shen A Q, Long H J, et al.Construction & Building Materials, 2021, 306, 124912.
4 Lyu Z H, Shen A Q, Li Y, et al.Road Materials and Pavement Design, 2022, 23(7), 1585.
5 Li Z N, Shen A Q, Liu Y W, et al.Construction and Building Materials, 2022, 321, 126344.
6 Yang J Y, Tan J J, Shen A Q, et al.Case Studies in Construction Materials, 2022, 17, e01579.
7 Singh N K, Rai B.Journal of Applied Engineering Sciences, 2018, 8(2), 41.
8 Fattouh M S, Tayeh B A, Agwa I S, et al.Case Studies in Construction Materials, 2023, 18, e01720.
9 Li Z N, Shen A Q, Zeng G P, et al.Materials Today Communications, 2022, 33, 104824.
10 Fiore V, Scalici T, Di Bella G, et al.Composites Part B:Engineering, 2015, 74, 74.
11 Ayub T, Shafiq N, Nuruddin M F, et al.Advances in Materials Science and Engineering, 2014, 2014, 1.
12 Li Y, Shen A Q, Wu H.Materials, 2020, 13(14), 3238.
13 Wu H, Qin X, Huang X, et al.Materials, 2023, 16(2), 623.
14 Guo Y C, Pan H M, Shen A Q, et al.Structures, 2023, 56, 105018.
15 Guo Y C, Liu H C, Shen A Q, et al.Journal of Chang’an University (Natural Science Edition), 2023, 43(2), 89(in Chinese).
郭寅川, 刘洪昌, 申爱琴, 等. 长安大学学报(自然科学版), 2023, 43(2), 89.
16 Yang J Y, Guo Y C, Shen A Q, et al.The International Journal of Pavement Engineering, 2022, 24(2), 2141741.
17 Yang J Y, Guo Y C, Tan J J, et al.Case Studies in Construction Materials, 2022, 16, e01051.
18 Shen A Q, Song P, Guo Y C, et al.Journal of South China University of Technology(Natural Science Edition), 2018, 46(11), 92(in Chinese).
申爱琴, 宋攀, 郭寅川, 等. 华南理工大学学报(自然科学版), 2018, 46(11), 92.
19 Guo Y C, Xiao H H, Shen A Q, et al.Bulletin of the Chinese Ceramic Society, 2019, 38(3), 729(in Chinese).
郭寅川, 肖海涵, 申爱琴, 等. 硅酸盐通报, 2019, 38(3), 729.
20 Zhou H, Jia B, Huang H, et al.Materials, 2020, 13(6), 1362.
21 Guo Y C, Pan H M, Shen A Q, et al.Structures, 2023, 56, 105018.
22 Thiele M, Pirskawetz S.Materials, 2022, 15(1), 341.
23 Zhou Y, Chen M G.Advances in Civil Engineering, 2022, 2022, 1.
24 Li Z N, Guo Y C, Xie B, et al.The International Journal of Pavement Engineering, 2023, 24(2), 2032700.
25 Shen A Q, Lin S L, Guo Y, et al.Construction and Building Materials, 2018, 174, 684.
26 Xiao J Z, Lv Z Y, Duan Z H, et al.Construction and Building Materials, 2023, 397, 132430.
27 Jiang C H, Fan K, Wu F, et al.Materials & Design, 2014, 58, 187.
28 Yu L, Zhang J, Zhang J X, et al.Journal of Harbin Engineering University, 2015, 36(11), 1459(in Chinese).
于蕾, 张君, 张金喜, 等. 哈尔滨工程大学学报, 2015, 36(11), 1459.
29 Yang Y Y, Zhou Q, Li X K, et al.Cement & Concrete Composites, 2019, 104, 103338.
30 Guo Y H, Hu X Y, Lv J F.Construction & Building Materials, 2019, 223, 142.
31 Soroushian P, Elzafraney M.Cement and Concrete Composites, 2004, 26(7), 853.
32 Yang L Y, Xie H Z, Fang S Z, et al.Structures, 2021, 31, 330.
33 Guo Y C, Shen A Q, He T X, et al.Journal of Traffic and Transportation Engineering, 2016, 16(5), 1(in Chinese).
郭寅川, 申爱琴, 何天钦, 等. 交通运输工程学报, 2016, 16(5), 1.
34 Yang J Y, Guo Y C, Shen A Q, et al.The International Journal of Pavement Engineering, 2023, 24(2), 2141741.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 杨军兆, 张戎令, 薛彦瑾, 王小平, 窦晓峥, 宋毅. 基于分形维数的硫酸盐环境下混凝土抗蚀系数及微观机理研究[J]. 材料导报, 2025, 39(7): 24020033-7.
[13] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[14] 黄昆鹏, 张雨波, 杨楠. 类魔方式的多孔超材料设计及可调控弹性模量的研究[J]. 材料导报, 2025, 39(7): 23120207-9.
[15] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed