Please wait a minute...
材料导报  2024, Vol. 38 Issue (14): 23030104-8    https://doi.org/10.11896/cldb.23030104
  无机非金属及其复合材料 |
CO2养护煤矸石粗骨料性能研究
曹梦媛1, 于素慧2, 袁健2, 王炜2, 张少辉1,3, 王艳1,3,*
1 西安建筑科技大学材料科学与工程学院,西安 710055
2 火箭军工程大学作战保障学院,西安 710025
3 西安建筑科技大学土木工程学院,西安 710055
Research on Properties of Coal Gangue Coarse Aggregate Cured by CO2
CAO Mengyuan1, YU Suhui2, YUAN Jian2, WANG Wei2, ZHANG Shaohui1,3, WANG Yan1,3,*
1 School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 School of Academy of Combat Support, Rocket Force University of Engineering, Xi'an 710025, China
3 School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 11577KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 煤矸石粗骨料存在压碎指标高、吸水率大以及与混凝土基体界面粘结差等缺点,限制了其在土木工程的应用,因此,改善煤矸石各方面性能是提高其应用率的前提。CO2养护是利用CO2与水泥水化产物Ca(OH)2发生反应来改善水泥浆体的结构,可降低能耗、改善骨料的性能。本工作研究了养护温度(20 ℃/40 ℃)、CO2浓度(65%/95%)和养护时间(2 h/4 h/6 h)对水泥基材料包裹的煤矸石粗骨料和水泥+环氧树脂材料包裹的煤矸石粗骨料的表观密度、吸水率、压碎指标和坚固性的影响,对其化学成分和界面过渡区形貌进行了分析,并对CO2养护后的煤矸石粗骨料进行固碳率测定。CO2养护在骨料表面形成了一层强度较高的外壳,骨料性能得到改善,升高养护温度、增大CO2浓度和延长养护时间,骨料表观密度可提升0.04%~3.24%,吸水率可降低6.51%~14.29%,煤矸石骨料的压碎指标和坚固性指数可从Ⅱ级提升到Ⅰ级骨料标准。经CO2养护后,煤矸石骨料的固碳率最高可达20.07%,在提高骨料性能的同时降低了CO2排放量。不同材料包裹的煤矸石骨料中,水泥包裹层中Ca(OH)2含量较高,经CO2养护后界面粘结紧密,微观形貌也更加致密,提升效果最为显著,水泥+5%硅灰次之,水泥+10%粉煤灰和水泥+环氧树脂提升较差。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹梦媛
于素慧
袁健
王炜
张少辉
王艳
关键词:  煤矸石  CO2养护  压碎指标  坚固性  界面过渡区  固碳率    
Abstract: The disadvantage of coal gangue coarse aggregate (CGCA) such as high crushing index, high water absorption and poor interface adhesion with concrete matrix limit its application in civil engineering.Improving the performance of CGCA is the premise of increasing its application rate. CO2 curing is to improve the structure of cement paste by the reaction of CO2 with cement hydration product Ca(OH)2, which can reduce energy consumption and improve the properties of aggregate. In this work, the effects of curing temperature (20°C/40°C), CO2 concentration (65%/95%) and curing time (2 h/4 h/6 h) on the apparent density, water absorption, crushing index and firmness of CGCA wrapped by cement-based materials and cement + epoxy resin materials were studied. And the chemical composition and interface transition zone morphology were analyzed. Moreover, the carbon fixation rate of CGCA after CO2 curing was measured. A high strength shell is formed on the surface of the wrapped CGCA by CO2 curing, and the CGCA performance is improved. Increasing the curing temperature, CO2 concentration and curing time, the apparent density can be increased by 0.04%—3.24%, and the water absorption can be reduced by 6.51%—14.29%. The crushing index and firmness index of wrapped CGCA can be improved from grade II to grade I aggregate standard. After CO2 curing, the carbon fixation rate can reach up to 20.07%, which improves the aggregate performance and reduces the CO2 emission. Due to the high content of Ca(OH)2 in the cement wrapped layer, the interface is tightly bonded after CO2 curing, and the microstructure is more compact. Therefore, the improvement effect of cement wrapping is the most significant. As a comparison, the improvement effect of cement + 5% silica fume is weak, and the improvement of cement + 10% fly ash and cement + epoxy resin is the worst.
Key words:  coal gangue,CO2 curing,crushing index,firmness index,interfacial transition zone    CO2 uptake ratio
出版日期:  2024-07-25      发布日期:  2024-08-12
ZTFLH:  TU528  
基金资助: 国家优秀青年科学基金(52222806);国家自然科学基金面上项目(52078414);陕西省杰出青年科学基金(2022JC-20);陕西省教育厅科学研究计划重点项目(20JY037);洞库混凝土被复结构盐蚀作用机理与性能提升关键技术应用研究(No.5);西安建筑科技大学优秀博士学位论文培育基金 (2021XYBPY004)
通讯作者:  * 王艳,西安建筑科技大学教授、博士研究生导师。2020年入选陕西省“特支计划”青年拔尖人才,2021年获陕西省杰出青年科学基金,2022年获国家优秀青年科学基金,教育部“现代混凝土结构安全性与耐久性”创新团队核心成员。主要从事隧道与地下工程结构耐久性领域的研究工作,包括一般地质环境混凝土衬砌耐久性、高地热环境混凝土衬砌耐久性、隧道衬砌损伤的智能感知技术等。主持国家自然科学基金项目4项、省部级基金项目5项,发表学术论文60余篇。wangyanwjx@126.com   
作者简介:  曹梦媛,2019年于西安建筑科技大学获得工学学士学位,现为西安建筑科技大学材料科学与工程学院硕士研究生,在王艳教授的指导下进行研究。
引用本文:    
曹梦媛, 于素慧, 袁健, 王炜, 张少辉, 王艳. CO2养护煤矸石粗骨料性能研究[J]. 材料导报, 2024, 38(14): 23030104-8.
CAO Mengyuan, YU Suhui, YUAN Jian, WANG Wei, ZHANG Shaohui, WANG Yan. Research on Properties of Coal Gangue Coarse Aggregate Cured by CO2. Materials Reports, 2024, 38(14): 23030104-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030104  或          http://www.mater-rep.com/CN/Y2024/V38/I14/23030104
1 Zhang Y L, Ling T C. Construction and Building Materials, 2020,234, 117424.
2 Zhu Y Y, Zhu Y C, Wang A G, et al. Cement and Concrete Composites, 2021, 121(9), 104057.
3 Li J Y, Wang J M. Journal of Cleaner Production, 2019, 239(C), 117946.
4 Yang C J. Mining Safety & Environmental Protection, 2022, 49(1), 104(in Chinese).
杨长俊.矿业安全与环保, 2022, 49(1), 104.
5 Xu J P, Fan L R, Lv C W. Sustainability, 2017, 9(2), 251.
6 Yu L J, Feng Y L, Yan W. Advanced Materials Research, 2012, 1792, 524.
7 Zhang J Y, Liu D D, Guo X F, et al. Chinese Journal of Environmental Engineering, 2021, 15(10), 3306(in Chinese).
张吉元,柳丹丹,郭晓芳,等.环境工程学报, 2021, 15(10), 3306.
8 Yu J L, Meng F R, Li X C,et al. Advanced Materials Research, 2012, 1914,550.
9 Jiao H, Li X J. Journal of China Coal Society, 2021, 46(10), 3332(in Chinese).
焦赫, 李新举. 煤炭学报, 2021, 46(10), 3332.
10 Zhu Y Y, Wang A G, Sun D S, et al. Journal of China Coal Society, 2021, 46(11), 3657(in Chinese).
朱愿愿, 王爱国, 孙道胜, 等.煤炭学报, 2021, 46(11), 3657.
11 煤矸石综合利用管理办法.中华人民共和国国务院公报, 2015(7), 31.
12 Wu C L, Zhang C, Li J W,et al. Journal of Cleaner Production, 2022, 377, 134310.
13 Gao S, Zhao G H, Guo L H,et al. Construction and Building Materials,2021,268,121212.
14 Zhu X L, Zhang M, Wang D M, et al. Metal Mine, 2022(1), 21(in Chinese).
祝小靓, 张明, 王栋民, 等. 金属矿山, 2022(1), 21.
15 Yan B. Experimental study on mechanical properties and frost resistance of modified coal gangue aggregate concrete. Master's Thesis, Xi'an University of Architecture and Technology, China, 2017 (in Chinese).
严冰.改性煤矸石骨料混凝土力学性能及抗冻性能试验研究.硕士学位论文, 西安建筑科技大学, 2017.
16 Wang Y, Zuo Z, Wen B,et al. Journal of Mining Science and Technology, 2022, 7(5), 554(in Chinese).
王艳, 左震, 文波, 等.矿业科学学报, 2022, 7(5), 554.
17 Qiu J S, Zhou Y X, Vatin N I,et al. Construction and Building Mate-rials, 2020, 264,120720.
18 Zhu H G,Huo Q J,Ni Y D, et al. Materials Reports,2021(22), 22085(in Chinese).
朱红光, 霍青杰, 倪亚东, 等.材料导报, 2021(22), 22085.
19 Wang Q, Huang C Y, Liu S,et al. Concrete, 2015(9), 77(in Chinese).
王晴, 黄成洋, 刘锁, 等. 混凝土, 2015(9), 77.
20 Bai Z N, Li L H, Shen Y, et al. Engineering and Technological Search, 2018(10), 15(in Chinese).
白朝能, 李霖皓, 沈远, 等. 工程技术研究, 2018(10), 15.
21 Sun Q, Liu J, Lin Z M,et al. Bulletin of the Chinese Ceramic Society, 2015(7), 1959(in Chinese).
孙琦, 刘军, 林志民, 等.硅酸盐通报, 2015(7), 1959.
22 Marta Castellote, Lorenzo Fernandez, Carmen Andrade, et al. Materials and Structures, 2009, 42(4), 515.
23 Guo R N, Yi Z W, Wang T, et al. Chemical Industryand Engineering Progress, 2022, 41(5), 2722(in Chinese).
郭若楠, 易臻伟, 王涛, 等. 化工进展, 2022, 41(5), 2722.
24 Han J, Liu W, Wang S, et al. Journal of Materials in Civil Engineering, 2017, 29(2), 04016216.
25 Tang Y X, Zhao J M, Nie L W. Chinese Journalof Applied Chemistry, 2022,39(11),1665(in Chinese).
唐永鑫, 赵金明, 聂立武. 应用化学, 2022,39(11),1665.
26 Gao Y Q, Pan B H, Liang C F, et al. Journal of Civil and Environmental Engineering, 2021, 43(6), 95(in Chinese).
高越青, 潘碧豪, 梁超锋, 等. 土木与环境工程学报, 2021, 43(6), 95.
27 Zhan B, Poon C S, Liu Q, et al. Construction and Building Materials, 2014, 67, 3.
28 Ma H Q, Yi C, Zhu H G, et al. Materials Reports, 2018, 32(14), 2390(in Chinese).
马宏强,易成,朱红光,等. 材料导报,2018,32(14), 2390.
29 Xuan D X, Zhan B J, Poon C S. Cement and Concrete Composites, 2016, 65, 67.
30 Pan G, Zhan M, Fu M, et al. Construction and Building Materials, 2017, 154, 810.
31 Zhan B J, Xuan D X, Poon C S, et al. Cement and Concrete Research, 2020, 136, 106175.
32 Jóźwiak-Niedźwiedzka D, Dąbrowski M, Dziedzic K, et al. Materials and Structures, 2022, 55(6), 164.
33 He T S, Wang F C. Civil engineering materials,China Building Materials Press, China, 2013, pp.133 (in Chinese).
何廷树,王福川.土木工程材料, 中国建材工业出版社, 2013, pp. 133.
34 Wang P, He Y J, Lyu L N, et al. Journal of the Chinese Ceramic Society, 2021,49(8),1722(in Chinese).
汪鹏, 何永佳, 吕林女, 等. 硅酸盐学报, 2021, 49(8), 1722.
35 Zhu J, Liu S, Song L, et al. Applied Sciences, 2022, 12(10), 5061.
36 Liao G S, Xu L, Liao Y S. Journal of Building Materials, 2017, 20(6), 840(in Chinese).
廖国胜, 徐路, 廖宜顺.建筑材料学报, 2017, 20(6), 840.
37 Wu L L, Kang T H, Yin B, et al. Journal of China Coal Society, 2015, 40(12), 2801(in Chinese).
毋林林, 康天合, 尹博, 等.煤炭学报, 2015, 40(12), 2801.
38 Mo L, Zhang F, Panesar D K, et al. Journal of Cleaner Production, 2017, 163, 252.
39 Shao Y X, Monkman S, Tran S. Journal of the Chinese Ceramic Society, 2010, 38(9), 1645(in Chinese).
邵一心, Monkman Sean, Tran Stanley. 硅酸盐学报, 2010, 38(9), 1645.
[1] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[2] 伍勇华, 匡玉峰, 易昂, 何娟, 原毅冰. 钢渣粉低液固比固碳工艺及固碳钢渣粉对水泥基材料性能的影响[J]. 材料导报, 2024, 38(13): 23060132-8.
[3] 刘泽, 段开瑞, 周梅, 张海波, 罗树琼, 房奎圳, 王栋民. 煤矸石在土木工程材料中的应用研究进展[J]. 材料导报, 2024, 38(10): 23050198-12.
[4] 孙志辉, 赵帅. “双碳”背景下煤矸石高附加值功能化改性技术现状与展望[J]. 材料导报, 2023, 37(S1): 23040034-10.
[5] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[6] 刘奎周, 张建仁, 田湘, 黄敦文, 彭晖. 利用H2O2发泡和碳化养护改善RMFC的固碳、力学和保温隔热性能[J]. 材料导报, 2023, 37(23): 22070288-8.
[7] 冯春花, 崔卜文, 郭晖, 张文艳, 朱建平. 水泥浆-碳化协同增强再生混凝土骨料研究[J]. 材料导报, 2023, 37(21): 22060098-5.
[8] 周梅, 白金婷, 郭凌志, 张玉琢. 基于响应曲面法的煤矸石地聚物注浆材料配比优化[J]. 材料导报, 2023, 37(20): 22020068-9.
[9] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[10] 朱丽华, 刘海林, 韩伟. 基于细观尺度的再生混凝土多相导热系数理论模型[J]. 材料导报, 2023, 37(12): 21110080-7.
[11] 高嵩, 班顺莉, 郭嘉, 邹传学, 宫尧尧. 硅灰对再生混凝土界面过渡区的影响[J]. 材料导报, 2023, 37(11): 21090034-7.
[12] 黄燕, 胡翔, 史才军, 吴泽媚. 混凝土中水泥浆体与骨料界面过渡区的形成和改进综述[J]. 材料导报, 2023, 37(1): 21050009-12.
[13] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[14] 杜青铉, 张宇航, 孙伟豪, 刘蕊, 庄尧量, 夏军武. 基于混合模型的煤矸石透水混凝土透水系数预测[J]. 材料导报, 2022, 36(Z1): 22040077-5.
[15] 徐福卫, 田斌, 徐港. 界面过渡区厚度对再生混凝土损伤性能的影响分析[J]. 材料导报, 2022, 36(4): 20100200-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed