Please wait a minute...
材料导报  2023, Vol. 37 Issue (21): 22060098-5    https://doi.org/10.11896/cldb.22060098
  无机非金属及其复合材料 |
水泥浆-碳化协同增强再生混凝土骨料研究
冯春花, 崔卜文, 郭晖, 张文艳, 朱建平*
河南理工大学材料科学与工程学院,河南 焦作 454000
Study on the Synergistic Effect of Cement Slurry-carbonation for Enhancing Recycled Concrete Aggregate
FENG Chunhua, CUI Buwen, GUO Hui, ZHANG Wenyan, ZHU Jianping*
School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
下载:  全 文 ( PDF ) ( 16199KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 提高再生混凝土骨料(RCA)的性能对其在结构工程中得到更广泛的应用有着重要的研究意义。本研究利用水泥浆-碳化协同增强方法对再生混凝土骨料(RCA)进行强化处理,并与未强化、单一水泥浆增强、单一碳化增强处理RCA进行对比分析。结果表明:协同强化后RCA的基本性能明显改善,吸水率、压碎值、孔隙率较未处理RCA分别降低了16.04%、19.77%、36.29%;与单一强化相比,水泥水化与碳化的协同效应可以在加固RCA表面的同时,进一步利用碳化产物修补RCA的附着砂浆和界面过渡区(ITZ)。水泥浆-碳化协同强化是一种效果明显、环境友好且成本低的RCA增强方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯春花
崔卜文
郭晖
张文艳
朱建平
关键词:  再生混凝土骨料  水泥浆-碳化协同强化  碳化增强  界面过渡区(ITZ)    
Abstract: Improving the performance of recycled concrete aggregate (RCA) has important research implications for their wider application in structural engineering. In this study, the RCA was enhanced by the synergistic effect of cement paste-carbonation, and analyzed in comparison with unreinforced, single cement slurry reinforced, and single carbonation reinforced treated RCA. The results showed that the basic properties of RCA after cement slurry-carbonation synergistic strengthening were significantly improved, and the water absorption, crushing value and porosity were reduced by 16.04%, 19.77% and 36.29%, respectively, compared with untreated RCA. In contrast to single reinforcement, the synergistic effect of cement hydration and carbonation can further utilize the carbonation products to repair the adhesion mortar and interfacial transition zone (ITZ) of RCA while reinforcing the RCA surface. It can be clearly stated that the use of cement slurry-carbonation synergistic reinforcement treatment is an effective, environmentally friendly and low-cost method of RCA enhancement.
Key words:  recycled concrete aggregate    cement slurry-carbonation synergistic strengthening    carbonized reinforcement    interfacial transition zone (ITZ)
出版日期:  2023-11-10      发布日期:  2023-11-10
ZTFLH:  TU521  
基金资助: 河南省重大公益专项 (201300311000);河南省高等学校重点科研项目(22A430022);河南省杰出外籍科学家工作室(GZS2021003)
通讯作者:  *朱建平,河南理工大学教授、博士研究生导师,2008年于南京工业大学获博士学位,同年进入河南理工大学任教。主要从事固体废弃物资源化利用、纳米改性水泥基材料、粒度调控水泥基材料、3D打印混凝土、混凝土耐久性、石膏基材料等方面的研究。近年来在国内外知名刊物上发表高水平学术论文30余篇,获得授权发明专利15项。jianpingzhu@hpu.edu.cn   
作者简介:  冯春花,河南理工大学材料科学与工程学院副教授。2012年6月毕业于南京工业大学,获得材料学博士学位。同年加入河南理工大学工作至今,主要从事水泥水化机理及固废综合利用方面的研究。在国内外重要期刊发表文章20余篇。
引用本文:    
冯春花, 崔卜文, 郭晖, 张文艳, 朱建平. 水泥浆-碳化协同增强再生混凝土骨料研究[J]. 材料导报, 2023, 37(21): 22060098-5.
FENG Chunhua, CUI Buwen, GUO Hui, ZHANG Wenyan, ZHU Jianping. Study on the Synergistic Effect of Cement Slurry-carbonation for Enhancing Recycled Concrete Aggregate. Materials Reports, 2023, 37(21): 22060098-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060098  或          http://www.mater-rep.com/CN/Y2023/V37/I21/22060098
1 Wang J, Zhang J, Cao D, et al. Construction and Building Materials, 2020, 234, 117366.
2 Duan Z H, Jiang S S, Xiao J Z, et al. Journal of Building Materials, 2021, 24(3), 545(in Chinese).
段珍华, 江山山, 肖建庄, 等. 建筑材料学报, 2021, 24(3), 545.
3 Chen C H, Liu R G, Zhu P H, et al. Journal of Building Materials, 2021, 24(6), 1216(in Chinese).
陈春红, 刘荣桂, 朱平华, 等. 建筑材料学报, 2021, 24(6), 1216.
4 Ho H L, Huang R, Lin W T, et al. Construction and Building Materials, 2018, 160, 278.
5 Feng C, Cui B, Huang Y, et al. Construction and Building Materials, 2022, 317, 126168.
6 Zhang H, Zhao Y, Meng T, et al. Construction and Building Materials, 2015, 95, 721.
7 Liang C, Lu N, Ma H, et al. Journal of CO2 Utilization, 2020, 39, 101185.
8 Kou S C, Zhan B J, Poon C. Cement and Concrete Composites, 2014, 45(1), 22.
9 Pan G, Zhan M, Fu M, et al. Construction and Building Materials, 2017, 154, 810.
10 Qiu J, Ting D, Yang E H. Construction and Building Materials, 2014, 57, 144.
11 Li W, Long C, Tam V W Y, et al. Construction and Building Materials, 2017, 142, 42.
12 Gao S, Guo J, Gong Y, et al. Case Studies in Construction Materials, 2022, 16, e01034.
13 Said A M, Ayad A, Talebi E, et al. Journal of the American Concrete Institute, 2017, 314, 1.
14 Kim J. Construction and Building Materials, 2021, 301, 124091.
15 Yue L, Li J. Construction and Building Materials, 2014, 53, 511.
16 Guo H, Shi C, Guan X, et al. Cement and Concrete Composites, 2018, 89, 251.
17 Yue G B. Study on the recycled concrete multi-interface structure and the damage mechanism of performance. Ph. D. Thesis, Qingdao University of Technology, China, 2018(in Chinese).
岳公冰. 再生混凝土多重界面结构与性能损伤机理研究. 博士学位论文, 青岛理工大学, 2018.
[1] 李克亮, 弓晋伟, 陈爱玖, 孙作正, 杜晓蒙, 李宁宁. 裹浆改性再生骨料的形态特征评价方法[J]. 材料导报, 2023, 37(21): 22100017-7.
[2] 韩照, 张云升, 乔宏霞, 冯琼, 薛翠真, 尚明刚. 基于CT扫描及图像处理技术的机制砂形貌研究[J]. 材料导报, 2023, 37(19): 22060032-6.
[3] 王晓娇, 戚承志, 周理安, 李太行, 陈昊祥, 王泽帆, 马啸宇, 封焱杰, 罗伊. 掺再生微粉的城墙内芯土渗透性和强度研究[J]. 材料导报, 2022, 36(Z1): 21100220-6.
[4] 李崇智, 孙浩, 叶国林, 张艺劼. 酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究[J]. 材料导报, 2021, 35(z2): 460-464.
[5] 于本田, 刘通, 王焕, 李盛, 谢超, 苏磊, 李彦林. 机制砂中片状颗粒对水泥胶砂性能的影响[J]. 材料导报, 2021, 35(14): 14058-14064.
[6] 宋普涛, 王晶, 关青锋, 周永祥, 黄靖, 冷发光. 混凝土用珊瑚砂氯离子溶出规律研究[J]. 材料导报, 2020, 34(Z2): 250-254.
[7] 梅源, 田新宇, 胡长明, 刘建国, 杨云飞, 朱军. 膨润土改性砂土工程性质及其在盾构施工中的应用[J]. 材料导报, 2020, 34(14): 14087-14092.
[8] 田中男, 张争奇, 李乃强, 徐玉峰, 唐亨山, 桂增俭. 工业废渣地聚合物注浆材料组分及性能增强的研究进展[J]. 材料导报, 2020, 34(19): 19034-19042.
[9] 吴春丽, 陈哲, 谢红波, 麦俊明, 苏青. 不锈钢渣的资源处置研究进展[J]. 材料导报, 2021, 35(Z1): 462-466.
[10] 诸利一, 吕文生, 杨鹏, 王志凯, 王志军. 超声波对全尾砂砂浆流变特性的影响[J]. 材料导报, 2020, 34(6): 6088-6094.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed