Please wait a minute...
材料导报  2025, Vol. 39 Issue (10): 24040083-10    https://doi.org/10.11896/cldb.24040083
  无机非金属及其复合材料 |
三维细观早龄期混凝土导热性能数值模拟
赵卫平1,*, 刘英健2, 生兆川1, 程赛1, 徐旸3
1 中国矿业大学(北京)力学与土木工程学院,北京 100083
2 天津泰达建设集团有限公司,天津 300457
3 中国铁道科学研究院集团有限公司铁道建筑研究所,北京 100081
3D Mesoscopic Numerical Simulation on Thermal Conductivity of Early-age Concrete
ZHAO Weiping1,*, LIU Yingjian2, SHENG Zhaochuan1, CHENG Sai1, XU Yang3
1 School of Mechanics and Civil Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
2 Tianjin Teda Construction Group Co., Ltd., Tianjin 300457, China
3 Railway Engineering Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China
下载:  全 文 ( PDF ) ( 34436KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究早龄期混凝土的导热性能,建立了三维细观混凝土模型,分别对不同龄期的混凝土圆柱体模型进行导热性能数值模拟。研究了石灰岩、粉砂岩、玄武岩和石英岩四种岩石种类骨料,并以玄武岩混凝土为例分析了三种不同体积占比以及三种不同粒径级配对早龄期混凝土导热性能的影响。结果表明:三维细观混凝土模型适用于早龄期混凝土的导热性能数值模拟,可以清晰地描绘骨料模型的几何外形及空间分布,展现早龄期混凝土内部的温度场、等温线以及热流场,准确地预测混凝土的导热性能。混凝土导热系数随着龄期的延长而减小,且混凝土的导热系数减小幅度逐渐变小并趋于稳定。混凝土模型的导热系数与岩石的导热系数呈正相关,岩石骨料的导热系数越大,混凝土整体的导热系数也越大。骨料体积占比对混凝土导热系数影响显著,混凝土的骨料体积占比越小,混凝土的导热系数越小。骨料粒径级配对混凝土导热系数的影响不显著。有限元模拟计算值与Hamilton和Crosser导热系数模型理论值之间的误差均在2.5%以内,表明模拟结果具有较高的准确性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵卫平
刘英健
生兆川
程赛
徐旸
关键词:  早龄期混凝土  参数化建模  导热性能  细观混凝土  数值模拟    
Abstract: In order to study the thermal conductivity of early-age concrete, 3D mesoscopic concrete models were established to simulate the thermal conductivity of concrete cylinder model at different ages. The concrete model included four kinds of rock aggregates such as limestone, siltstone, basalt and quartzite, and especially to the basalt concrete, the influences of three kinds of volume proportions and size gradations on the thermal conductivity of early-age were analyzed. The results show that the 3D mesoscopic concrete model is suitable for numerical simulation of thermal conductivity of early-age concrete, which can clearly describe the geometric shape and spatial distribution of aggregate model, show the internal temperature fields, isotherms and heat flow fields of early-age concrete, and accurately predict the thermal conductivity of concrete. The thermal conductivity of concrete decreases with the extension of curing age, and its reduction range becomes smaller and tends to be stable. The thermal conductivity of concrete is positively correlated with the thermal conductivity of rock. The greater the thermal conductivity of rock aggregate is, the greater the thermal conductivity of concrete is. The volume proportion of aggregate has a significant effect on the thermal conductivity of concrete. The smaller the volume proportion of aggregate, the smaller the thermal conductivity of concrete. The effect of aggregate particle size grade on the thermal conductivity of concrete is not significant. The values from finite element simulation have a high accuracy calculated with an error of less than 2.5% to the theoretical values from H-C model.
Key words:  early-age concrete    parametric modeling    thermal conductivity    meso-concrete    numerical simulation
出版日期:  2025-05-25      发布日期:  2025-05-13
ZTFLH:  TU528  
基金资助: 国家自然科学基金联合基金重点项目(U22A20244);国家自然科学基金(52278467)
通讯作者:  *赵卫平,中国矿业大学(北京)力学与土木工程学院副教授、博士研究生导师。目前主要从事建筑材料、建筑结构等方面的研究。zhaowp@cumtb.edu.cn   
引用本文:    
赵卫平, 刘英健, 生兆川, 程赛, 徐旸. 三维细观早龄期混凝土导热性能数值模拟[J]. 材料导报, 2025, 39(10): 24040083-10.
ZHAO Weiping, LIU Yingjian, SHENG Zhaochuan, CHENG Sai, XU Yang. 3D Mesoscopic Numerical Simulation on Thermal Conductivity of Early-age Concrete. Materials Reports, 2025, 39(10): 24040083-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040083  或          https://www.mater-rep.com/CN/Y2025/V39/I10/24040083
1 Zhu B F. Temperature stress and temperature control of mass concrete, Water Resources and Electric Power Press, China, 2012, pp.21 (in Chinese).
朱伯芳. 大体积混凝土温度应力与温度控制, 水利电力出版社, 2012, pp.21.
2 Hichem N, Djamel B, Hafnaoui G, et al. Annals of West University of Timisoara Physics, 2022, 64(1), 158.
3 Kamar A, Carlos P, Ana V, et al. Soils and Foundations, 2024, 64(1), 101405.
4 Yang W, Wang Y Y, Liu J P, et al. Journal of Xi’an University of Architecture and Technology (Natural Science Edition), 2018, 50(1), 57 (in Chinese).
杨雯, 王莹莹, 刘加平, 等. 西安建筑科技大学学报(自然科学版), 2018, 50(1), 57.
5 Campanale M, Moro L. Transport in Porous Media, 2016, 113(2), 345.
6 Dai J, Wang Q, Bi R, et al. Construction and Building Materials, 2022, 10, 315.
7 Kook-Han, Kim. Cement and Concrete Research, 2003, 10(20), 96.
8 Xiao J Z, Song Z W, Zhang F, et al. Journal of Building Materials, 2010, 13(1), 17 (in Chinese).
肖建庄, 宋志文, 张枫, 等. 建筑材料学报, 2010, 13(1), 17.
9 Wittmann F H, Roelfstra P E, Sadouki H. Materials Science and Engineering, 1985, 68(2), 239.
10 Tang S B, Tang C A, Liang Z Z, et al. Journal of Civil Engineering, 2012, 45(2), 11 (in Chinese)
唐世斌, 唐春安, 梁正召, 等. 土木工程学报, 2012, 45(2), 11.
11 Wang L C, Chang Z, Bao J W, et al. Journal of Hydraulic Engineering, 2017, 48(7), 765 (in Chinese).
王立成, 常泽, 鲍玖文, 等. 水利学报, 2017, 48(7), 765.
12 Khan M I. Building and Environment, 2002, 37(6), 607.
13 Pommersheim J M, Clifton J R. Cement and Concrete Research, 1982, 12(6), 765.
14 Schindler A K. Concrete hydration, temperature development, and setting at early-ages. Master’s Thesis, The University of Texas at Austin, USA, 2002.
15 Maraveas C, Wang Y C, Swailes T. Construction and Building Materials, 2013, 48(11), 248.
16 Vosteen H D, Rüdiger S. Physics and Chemistry of the Earth Parts A/B/C, 2003, 28(9), 499.
17 Breugel K V. Cement and Concrete Research, 1995, 25(3), 522.
18 Liu Y R, Tang H M. Rock mass mechanics, Chemical Industry Press, China, 2008, pp.108 (in Chinese).
刘佑荣, 唐辉明. 岩体力学, 化学工业出版社, 2008, pp.108.
19 Xiao J Z, Huang Y B, Ren H M. Flyash, 2008, 20(5), 17 (in Chinese).
肖建庄, 黄运标, 任红梅. 粉煤灰, 2008, 20(5), 17.
20 Wiener O. Abhandl Math-phys, Klasse Sachs Akad Wiss, Germany, 1912, pp.121.
21 Maxwell J C. A Treatise on Electricity and Magnetism. Dover Publication, the United States, 1954, pp.10.
22 Campbell-Allen D, Thorne C P. Magazine of Concrete Research, 1963, 15(43), 39.
23 Hamilton R L, Crosser O K. Industrial and Engineering Chemistry Research Fundamentals, 1962, 1(3), 27.
24 Wang B, Wang H, Zhang Z Q, et al. Chinese Journal of Applied Mechanics, 2018, 35(5), 1072 (in Chinese).
汪奔, 王弘, 张志强, 等. 应用力学学报, 2018, 35(5), 1072.
25 Pan Z C, Chen A R. Journal of Tongji University (Natural Science Edition), 2013, 41(5), 759 (in Chinese).
潘子超, 陈艾荣. 同济大学学报(自然科学版), 2013, 41(5), 759.
26 Wang S W, Zhu H T, Wang B, et al. Materials Reports, 2021, 35(3), 3085 (in Chinese).
王尚伟, 朱海堂, 王博, 等. 材料导报, 2021, 35(3), 3085.
27 Ge X S, Ye H. Basic principles of heat and mass transfer, Chemical Industry Press, China, 2009, pp.444 (in Chinese).
葛新石, 叶宏. 传热和传质基本原理, 化学工业出版社, 2009, pp.444.
28 Chen B, Guan B, Lu X, et al. Construction and Building Materials, 2022, 319, 126078.
[1] 王耀, 郑新颜, 黄伟, 吴应雄, 黄雅莹, 张恒春, 张峰. 超高性能混凝土-花岗岩石材界面的抗剪性能研究[J]. 材料导报, 2025, 39(6): 24010107-10.
[2] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[3] 李雷, 孙东旭, 柴玉莹, 谢飞, 吴明. 剥离涂层下含缺陷管道腐蚀规律的瞬态数值模拟研究[J]. 材料导报, 2025, 39(5): 23010094-9.
[4] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[5] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[6] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[7] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[8] 张学鹏, 张戎令, 杨斌, 肖鹏震, 王小平, 龙朝飞. 冻融-硫酸盐腐蚀耦合作用下早龄期混凝土强度演变及预测模型研究[J]. 材料导报, 2024, 38(5): 22080059-9.
[9] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[10] 张天刚, 潘启越, 张志强, 曹思雨. 铝合金表面阳极氧化膜激光清洗机制分析[J]. 材料导报, 2024, 38(24): 23100128-10.
[11] 金浏, 杨健, 吴洁琼, 杜修力. 考虑混凝土细观非均质性的钢筋混凝土结构疲劳寿命预测概率模型[J]. 材料导报, 2024, 38(20): 23090009-8.
[12] 郑莲宝, 李旺, 王松伟, 徐勇, 宋鸿武. 基于场量传递的流动-传热-凝固过程耦合计算模型及其应用[J]. 材料导报, 2024, 38(20): 23080032-7.
[13] 邱飒蔚, 蒋家传, 叶拓, 张越, 雷贝, 王涛. AA7075-T6铝合金电阻点焊工艺参数优化研究[J]. 材料导报, 2024, 38(17): 23120177-8.
[14] 赵楠, 刘鹏, 王林, 林书行, 李昊阳. 回转窑中回收炉气与煤粉混合燃烧的数值模拟[J]. 材料导报, 2024, 38(16): 23040062-6.
[15] 闾川阳, 李科桥, 盛剑翔, 顾小龙, 石磊, 杨建国, 贺艳明. AlN/Cu钎焊接头残余应力的数值模拟研究[J]. 材料导报, 2024, 38(16): 23030229-9.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed