Please wait a minute...
材料导报  2025, Vol. 39 Issue (18): 24090084-9    https://doi.org/10.11896/cldb.24090084
  高分子与聚合物基复合材料 |
气凝胶吸波材料的研究进展
王伟超, 汪刘应*, 刘顾*, 黄洁, 葛超群
火箭军工程大学智剑实验室,西安 710025
Research Progress of Aerogel Electromagnetic Wave Absorbing Materials
WANG Weichao, WANG Liuying*, LIU Gu*, HUANG Jie, GE Chaoqun
Zhijian Laboratory, Rocket Force University of Engineering, Xi'an 710025, China
下载:  全 文 ( PDF ) ( 57973KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 吸波材料目前在多个领域发挥着重要作用,然而轻量化和宽频吸收仍然是吸波材料研究中的重点和难点。气凝胶所具有的轻质、隔热、耐高温等固有特性,为基于气凝胶的吸波材料提供了多功能、多环境应用的可能性,有望成为新一代理想吸波材料。本文阐述了气凝胶材料的吸波机制,并系统介绍了碳基、陶瓷基、聚合物基气凝胶吸波材料的特点与发展,分析了基于结构调控、复合与改性、构筑超结构和多功能化的气凝胶吸波材料的优化方法。最后,总结了气凝胶吸波材料所面临的挑战与发展方向,以期为气凝胶吸波材料的研究与实际应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王伟超
汪刘应
刘顾
黄洁
葛超群
关键词:  气凝胶  多孔材料  吸波材料  多功能    
Abstract: Electromagnetic wave absorbing (EWA) materials currently play an important role in various fields. However, lightweighting and wideband absorption remain the focuses and challenges of EWA materials research. Aerogels intrinsic properties, such as being lightweight, thermally insulating, and heat-resistant, offer extensive possibilities for multifunctional and diverse environmental applications. This positions them as a highly promising contender for the forthcoming generation of EWA materials. This article elucidates the absorption mechanism of aerogel materials and provides a systematic introduction to the characteristics and development of carbon-based, ceramic-based, and polymer-based aerogel microwave absorbing materials. The optimization approaches for aerogel absorbers are analyzed, focusing on structural control, composite and modification, construction of metastructures, as well as multifunctionalization. Finally, the challenges and future development directions of aerogel EWA materials are summarized, aiming to provide reference for their study and practical application.
Key words:  aerogel    porous material    electromagnetic wave absorbing material    multifunction
出版日期:  2025-09-25      发布日期:  2025-09-11
ZTFLH:  TB34  
基金资助: 中国博士后科学基金(2022M723884);陕西省高层次人才专项(2020-44);陕西高校青年创新团队
通讯作者:  *汪刘应,火箭军工程大学智剑实验室教授,博士研究生导师。主要从事特种功能材料与涂层技术研究。lywangxa@163.com;
刘顾,火箭军工程大学智能实验室教授,博士研究生导师。主要从事电磁波吸收材料、高温涂层技术以及特种功能材料研究。liugu5032@163.com   
作者简介:  王伟超,火箭军工程大学智剑实验室博士研究生。目前主要研究领域为轻质耐高温电磁功能材料设计与制备。
引用本文:    
王伟超, 汪刘应, 刘顾, 黄洁, 葛超群. 气凝胶吸波材料的研究进展[J]. 材料导报, 2025, 39(18): 24090084-9.
WANG Weichao, WANG Liuying, LIU Gu, HUANG Jie, GE Chaoqun. Research Progress of Aerogel Electromagnetic Wave Absorbing Materials. Materials Reports, 2025, 39(18): 24090084-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090084  或          https://www.mater-rep.com/CN/Y2025/V39/I18/24090084
1 Huang J, Wang L, Wang B, et al. Chemical Engineering Journal, 2023, 473, 145356.
2 Sharma S, Parne S R, Panda S S, et al. Advances in Colloid and Interface Science, 2024, 327, 103143.
3 Zhao G, Shi L, Yang G, et al. Journal of Materials Chemistry A, 2023, 11(2), 512.
4 Xie J, Ding S. International Journal of Biological Macromolecules, 2023, 226, 102.
5 Wang S, Wang F, Lu C, et al. Food Control, 2024, 155, 110031.
6 Huang Z, Qin R, Zhang H, et al. Carbon, 2023, 212, 118150.
7 Zhao Q C. Polymeric Materials Science and Engineering, 2005(2), 28 (in Chinese).
赵青春. 高分子材料科学与工程, 2005(2), 28.
8 Zhan W, Shi F, Li L X, et al. Acta Materiae Compositae Sinica, 2023, 40(9), 4958 (in Chinese).
展望, 时钒, 李丽霞, 等. 复合材料学报, 2023, 40(9), 4958.
9 Qin M, Zhang L, Wu H. Advanced Science, 2022, 9(10), 2105553.
10 Zhang J, Zhang J, Shuai X, et al. Chemistry-An Asian Journal, 2021, 16(23), 3817.
11 Yang W, Jiang B, Che S, et al. New Carbon Materials, 2021, 36(6), 1016.
12 Xu J. Synthetic Metals, 2023, 295, 117352.
13 Wang Y, Zhou Z, Zhu J, et al. Composites Part B:Engineering, 2021, 220, 108985.
14 Wu L, Shu R, Zhang J, et al. Journal of Colloid and Interface Science, 2022, 608, 1212.
15 Hu H, Zhao Z, Wan W, et al. Advanced Materials, 2013, 25(15), 2219.
16 Li S, Sun Y, Meng F, et al. Chemical Engineering Journal, 2024, 498, 155405.
17 Qiu J, Liu X, Peng C, et al. Journal of Materials Chemistry A, 2024, 12(33), 21997.
18 Bryning M B, Milkie D E, Islam M F, et al. Advanced Materials, 2007, 19(5), 661.
19 Liu C, Wu N, Pan F, et al. Composites Part B:Engineering, 2024, 287, 111835.
20 Jang D, Yoon H N, Seo J, et al. Composites Science and Technology, 2021, 212, 108866.
21 Liu F, Wang Q, Zhai G, et al. Nature Communications, 2022, 13(1), 5755.
22 Alexander R, Kaushal A, Prakash J, et al. Journal of Porous Materials, 2023, 30(2), 507.
23 Zhang X S, Wang B, Wu N, et al. Journal of Inorganic Materials, 2021, 36(3), 245 (in Chinese).
张晓山, 王兵, 吴楠, 等. 无机材料学报, 2021, 36(3), 245.
24 Gash A E, Tillotson T M, Satcher Jr J H, et al. Journal of Non-Crystalline Solids, 2001, 285(1-3), 22.
25 Wang Z, Zhao H, Dai D, et al. Ceramics International, 2022, 48(18), 26416.
26 Lei C, Wang L, Huang X, et al. Journal of Alloys and Compounds, 2024, 1005, 175910.
27 Mao B, Xia X, Qin R, et al. Journal of Alloys and Compounds, 2023, 936, 168314.
28 Vakifahmetoglu C, Semerci T, Gurlo A, et al. Current Opinion in Solid State and Materials Science, 2021, 25(4), 100936.
29 Shao G, Liang J, Zhao W, et al. Journal of Alloys and Compounds, 2020, 813, 152007.
30 Zhang X, Yang L, Han S, et al. Ceramics International, 2024, 50(19), 35145.
31 Xing R, Xu G, Qu N, et al. Advanced Functional Materials, 2024, 34(31), 2307499.
32 Tu J Y, Mu Y Y, Xu H L, et al. Journal of Aeronautical Materials, 2019, 39(4), 1 (in Chinese).
涂建勇, 穆阳阳, 许海龙, 等. 航空材料学报, 2019, 39(4), 1.
33 Ma Y, Li Y, Zhao X, et al. Journal of Alloys and Compounds, 2022, 919, 165792.
34 Si Y, Wang X, Dou L, et al. Science Advances, 2018, 4(4), s8925.
35 Quan J, Lan X, Lim G J H, et al. Journal of Alloys and Compounds, 2022, 911, 165097.
36 Chen Y, Shao G F, Wu X D, et al. Materials Reports, 2016, 30(13), 55 (in Chinese).
陈颖, 邵高峰, 吴晓栋, 等. 材料导报, 2016, 30(13), 55.
37 Wang Z, Liu L, Zhang Y, et al. Polymers, 2023, 15(8), 1888.
38 Wang Y, Qu Z, Wang W, et al. Chemical Engineering Journal, 2023, 470, 144435.
39 Chao M, Chu N, Zhang B, et al. Composites Communications, 2024, 46, 101837.
40 Vahabi H, Gholami F, Tomas M, et al. Journal of Vinyl and Additive Technology, 2024, 30(1), 5.
41 Zhang R, Wu N, Pan F, et al. Carbon, 2023, 203, 181.
42 Shao G, Shen X, Huang X. ACS Materials Letters, 2022, 4(9), 1787.
43 Cheng J, Zhao H, Cao M, et al. ACS Applied Materials & Interfaces, 2020, 12(23), 26301.
44 Feng S, Deng J, Yu L, et al. Cellulose, 2020, 27(17), 10213.
45 Wang Y, Gao X, Fu Y, et al. Composites Part B:Engineering, 2019, 169, 221.
46 Sui M, Lü X, Xie A, et al. Synthetic Metals, 2015, 210, 156.
47 Hou M, Gu H, Huang J, et al. Synthetic Metals, 2023, 293, 117251.
48 Liu J, Zhang L, Wu H. Advanced Functional Materials, 2022, 32(26), 2200544.
49 Wang J, Han M, Liu Y, et al. Journal of Colloid and Interface Science, 2023, 646, 970.
50 Liu P, Gao S, Chen C, et al. Carbon, 2020, 169, 276.
51 Huang X, Liu X, Jia Z, et al. Advanced Composites and Hybrid Materials, 2021, 4(4), 1398.
52 Sun X, Li Y, Huang Y, et al. Advanced Functional Materials, 2022, 32(5), 2107508.
53 Ma W, Liu X, Yang T, et al. Advanced Functional Materials, 2025, 35, 2314046.
54 Gu W, Tan J, Chen J, et al. ACS Applied Materials & Interfaces, 2020, 12(25), 28727.
55 Li Y, Liu X, Nie X, et al. Advanced Functional Materials, 2019, 29(10), 1807624.
56 Cai Z, Su L, Wang H, et al. Carbon, 2022, 191, 227.
57 Liang L, Li Q, Yan X, et al. ACS Nano, 2021, 15(4), 6622.
58 Zhang N, Zhang X J, Wang Y S, et al. Materials Research and Application, 2025, 19(1), 50(in Chinese).
张娜, 张绪纪, 王依山, 等. 材料研究与应用, 2025, 19(1), 50.
59 Luo J Y, Yan J X, Lyu X T, et al. Materials Research and Application, 2025, 19(1), 37(in Chinese).
罗静园, 严今浠, 吕欣铜, 等. 材料研究与应用, 2025, 19(1), 37.
[1] 庞淼, 钟天源, 潘勇, 齐延新, 黄宇彬. 含硼荧光材料及其在硼中子俘获治疗中的应用[J]. 材料导报, 2025, 39(5): 24090118-6.
[2] 李祥文, 李昆锋, 武晨浩, 费志方, 张震, 孙文彩, 杨自春. 不同碱性催化剂对疏水SiO2气凝胶性能的影响[J]. 材料导报, 2025, 39(17): 24080159-5.
[3] 王汇杰, 胡江涛, 盖晓倩, 刘馨蔓, 李仁爱, 肖惠宁, 刘超. 纳米纤维素在相变储能领域的应用研究进展[J]. 材料导报, 2025, 39(16): 24080046-12.
[4] 张育新, 邱慕寒, 李默涵. 纳米材料复合水凝胶及气凝胶在摩擦电纳米发电机中的研究进展[J]. 材料导报, 2025, 39(15): 25030074-11.
[5] 郭适, 郭启麟, 张瀛博, 巴泓雨, 陆相林, 刘会娥, 陈爽. 石墨烯/碳纳米管复合多孔材料用于光热辅助高黏重油吸附[J]. 材料导报, 2025, 39(13): 24050053-6.
[6] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[7] 吴子豪, 苏荣华, 马超, 解帅, 冀志江, 王英翔, 王静. 轻骨料水泥基多功能吸波材料的制备及有限元分析[J]. 材料导报, 2024, 38(5): 23080253-7.
[8] 陈渊泽, 牛春晖, 王雷, 杨明庆, 张世玉, 吕勇. 聚苯胺红外电致变色器件研究进展[J]. 材料导报, 2024, 38(5): 22090259-10.
[9] 刘玉慧, 柳仕林, 吴聪影, 吴琪琳. 基于碳材料的多维度柔性应变/压力传感器的研究进展[J]. 材料导报, 2024, 38(4): 22070258-9.
[10] 张昊, 黄宗玥, 张妍彬, 魏剑. (Si0.2Ti0.2Nb0.2Ta0.2V0.2)C高熵陶瓷的低温制备及吸波性能[J]. 材料导报, 2024, 38(3): 22050232-6.
[11] 李华伟, 王倩, 王荣, 刘飞宇, 谢汶桦, 刘锋. 复合吸波剂增强钢渣-水泥基双层结构吸波材料的制备[J]. 材料导报, 2024, 38(23): 23080003-8.
[12] 李杰, 胡祖明, 于俊荣, 王彦, 诸静. 聚对苯二甲酰对苯二胺气凝胶纤维的制备与性能[J]. 材料导报, 2024, 38(2): 22080102-6.
[13] 李思盈, 周超. 海泡石纤维增强二氧化硅气凝胶的制备及性能[J]. 材料导报, 2024, 38(19): 23030233-9.
[14] 穆锐, 刘元雪, 欧忠文, 胡志德, 姚未来, 成鑫磊, 雷屹欣, 杨秀明. 气凝胶复合材料的制备及保温隔热应用进展[J]. 材料导报, 2024, 38(14): 22110298-14.
[15] 张思钊, 刘淳, 姜勇刚, 冯坚. 聚酰亚胺气凝胶的耐高温性能研究进展[J]. 材料导报, 2024, 38(13): 23040260-11.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed