Please wait a minute...
材料导报  2025, Vol. 39 Issue (10): 24030125-8    https://doi.org/10.11896/cldb.24030125
  无机非金属及其复合材料 |
铅银渣中选择性提锌及配碳比对ZnO形貌和吸波性能的影响
杜云亮1,2, 杜雪岩1,2,*, 王胜1,2, 申莹莹1,2, 李彬1,2
1 兰州理工大学材料科学与工程学院,兰州 730050
2 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
Selective Extraction of Zinc from Lead-Silver Slag and Effect of Carbon Ratio on Morphology and Absorption Properties of Recovered ZnO
DU Yunliang1,2, DU Xueyan1,2,*, WANG Sheng1,2, SHEN Yingying1,2, LI Bin1,2
1 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 34158KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铅银渣因富含多种有价金属元素而备受关注,其综合利用已成为研究的焦点。本研究着眼于通过还原-烟化法从铅银渣中回收锌及其高值化应用,探讨了锌选择性回收的热力学条件及配碳比对回收的ZnO形貌和吸波性能的影响。结果表明:控制还原温度为1 050 ℃时,可以实现锌的选择性回收,烟尘中ZnO的纯度可达到99.28%;随着配碳比的变化,烟尘中氧化锌的形貌由表面光滑的板状物转变为表面粗糙的棒状凝聚物;当配碳比为10∶4时,ZnO在10.32 GHz处的反射损耗最小,为-25.66 dB,对应厚度为3.5 mm。本研究可为铅银渣的综合利用提供新途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜云亮
杜雪岩
王胜
申莹莹
李彬
关键词:  铅银渣  ZnO  还原-烟化法  配碳比  吸波性能    
Abstract: Lead-silver slag is highly valued due to its rich content of various valuable metal elements, and its comprehensive utilization has become a research focus. This study aims to recover zinc from lead-silver slag through a reduction-smelting process and explore the influence of thermal conditions and carbon ratio of the selective recovery of zinc on the morphology and absorption performance of recovered ZnO. The results show that by controlling the reduction temperature at 1 050 ℃, zinc can be selectively recovered, and the purity of ZnO in the dust can reach 99.28%. With the change of the carbon ratio, the morphology of zinc oxide in the dust transforms from smooth plate-like to rough rod-like agglomerates. When the carbon ratio is 10∶4, the minimum reflection loss of ZnO at 10.32 GHz is -25.66 dB, corresponding to a thickness of 3.5 mm. This study explores new approaches for the utilization of lead-silver slag.
Key words:  lead-silver slag    ZnO    reduction-smelting process    carbon ratio    absorption property
出版日期:  2025-05-25      发布日期:  2025-05-13
ZTFLH:  TF09  
基金资助: 甘肃省重点研发计划(23YFGA0055);国家自然科学基金(U22A20175);甘肃省高等学校产业支撑计划(2022CYZC-20);甘肃省科技重大专项(19ZD2GD001);沈阳材料科学国家研究中心-有色金属先进加工与再利用国家重点实验室-材料可持续发展联合基金重点项目(18LHZD001)
通讯作者:  *杜雪岩,博士,兰州理工大学材料科学与工程学院教授、博士研究生导师。目前主要从事冶金废渣综合利用,有机、无机复合功能材料等方面的研究。duxy@lut.edu.cn   
作者简介:  杜云亮,兰州理工大学材料科学与工程学院硕士研究生,在杜雪岩教授的指导下进行研究。目前主要研究领域为吸波材料。
引用本文:    
杜云亮, 杜雪岩, 王胜, 申莹莹, 李彬. 铅银渣中选择性提锌及配碳比对ZnO形貌和吸波性能的影响[J]. 材料导报, 2025, 39(10): 24030125-8.
DU Yunliang, DU Xueyan, WANG Sheng, SHEN Yingying, LI Bin. Selective Extraction of Zinc from Lead-Silver Slag and Effect of Carbon Ratio on Morphology and Absorption Properties of Recovered ZnO. Materials Reports, 2025, 39(10): 24030125-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030125  或          https://www.mater-rep.com/CN/Y2025/V39/I10/24030125
1 Wang S L, Gao X, Zhao Q, et al. Modern Chemical Industry, 2015, 35(1), 80 (in Chinese).
王树立, 高雪, 赵奇, 等. 现代化工, 2015, 35(1), 80.
2 Zhou T, Wang Z Y, Wu L H. Bulletin of Environmental Contamination and Toxicology, 2021, 107(6), 1176.
3 Dutrizac J, Dinardo O. Hydrometallurgy, 1983, (11), 61.
4 Yang Q F, Jian K X, Wang H B, et al. Non-ferrous Metal, 2018(6), 1 (in Chinese).
周起帆, 蒋开喜, 王海北, 等. 有色金属(冶炼部分), 2018(6), 1.
5 Zhang F, Chen C, Wang H B, et al. Comprehensive Utilization of Resources in China, 2015, 33(3), 37 (in Chinese).
张帆, 程楚, 王海北, 等. 中国资源综合利用, 2015, 33(3), 37.
6 Antrekowitsch J, Antrekowitsch H. Journal of Metals, 2001, 53(12), 26.
7 Julien C, Nathalie L, et al. Journal of Metals, 2021, 73(6), 1652.
8 Deng Z G, Zheng Y, Li X B, et al. International Journal of Chemical Reactor Engineering, 2020, 18(12), 243.
9 Wang Y Y, Yang H F, Jiang B, et al. Metallurgy and Materials, 2018, 25(2), 123.
10 Aparajith B, Mohanty D B, Gupta M L. Hydrometallurgy, 2010, 105(1-2), 127.
11 Li J, Ma H Z. Green Processing and Synthesis, 2018, 7(6), 552.
12 Ma W X, Yang P, Zhang L Z, et al. Mining and Metallurgical Engineering, 2022, 42(6), 105(in Chinese).
马卫星, 杨鹏, 张立志, 等. 矿冶工程, 2022, 42(6), 105.
13 Li Y L, Li J, Li Y L, et al. Hydrometallurgy, 2020, 39(3), 186 (in Chinese).
李银丽, 李敬, 李彦龙, 等. 湿法冶金, 2020, 39(3), 186.
14 Liu C, Wu Q, Jin H B, et al. Journal of Materials Chemistry C, 2015, 3(18), 4670.
15 Lu M M, Cao W Q, Shi H L. Journal of Materials Chemistry A, 2014, 2(27), 10540.
16 Song C Q, Yin X W, Han M K. Carbon, 2017, 116, 50.
17 Ur Rehman, Liu J, Ahmed B, et al. Journal of Saudi Chemical Society, 2019, 23(4), 385.
18 Luo W, Feng Q, Qu L, et al. Minerals Engineering, 2010, 23(6), 458.
19 Yan P Z, Shen Y Q, Du X Y, et al. Materials, 2020, 13(9), 2162.
20 Pu Y, Tao X, Zeng X F, et al. Journal of Magnetism and Magnetic Materials, 2010, 322(14), 1985.
21 Shah A, Ding A, Wang Y H, et al. Carbon, 2016, 96, 987.
22 Rehman U, Ahmed J, Bi R, et al. Journal of Saudi Chemical Society, 2019, 23(4), 385.
23 Song C Q, Yin X W, Han M K, et al. Carbon, 2017, 116, 50.
24 Ummi K H, Hanis H H, Mohamad A H, et al. Journal of Alloys and Compounds, 2022, 165145, 0925.
25 Veronica M S, Junqiao L, Debbie S S, et al. Journal of Energy Chemistry, 2021, 162(7), 2095.
26 Zhang X F, Dong X L, Huang H, et al. Journal of Physics D:Applied Physics, 2007, 40(17), 5383.
27 Sun G B, Dong B X, Cao M H, et al. Chemistry of Materials, 2011, 23(6), 1587.
28 Cheng Y, Zhao H Q, Yang Z H, et al. Journal of Alloys and Compounds, 2018, 762, 463.
29 Wen F S, Hou H, Xiang J Y, et al. Carbon, 2015, 89, 372.
30 Wang H, Xiang L, Wei W, et al. Applied Materials & Interfaces, 2017, 9(48), 42102.
31 Cao J W, Huang Y H, Zhang Y, et al. Acta Physica Sinica, 2008, 57(6), 3641.
32 Wang J, Li H F, Huang Y H, et al. Acta Physica Sinica, 2010, 59(3), 1946.
[1] 程亚杰, 许子琛, 王强, 魏浩, 孙希平, 王林. 一步法制备三维杆状聚吡咯及其吸波性能研究[J]. 材料导报, 2025, 39(8): 24010018-6.
[2] 梁平, 夏梓文, 冯扬, 杨伟业, 彭鸿雁, 赵世华. 不同制备条件下ZnO:X%Eu的光电特性研究[J]. 材料导报, 2025, 39(10): 24040188-6.
[3] 阮心怡, 张恒宇, 王妮, 肖红. 周期结构电磁超材料吸波体的设计及最新进展[J]. 材料导报, 2024, 38(3): 22090223-11.
[4] 张昊, 黄宗玥, 张妍彬, 魏剑. (Si0.2Ti0.2Nb0.2Ta0.2V0.2)C高熵陶瓷的低温制备及吸波性能[J]. 材料导报, 2024, 38(3): 22050232-6.
[5] 李红梅, 孟建兵, 于浩洋, 董小娟, 周海安, 战胜杰, 唐友泉. ZnO纳米颗粒掺杂对镍钛合金表面微弧氧化膜层形貌及性能的影响[J]. 材料导报, 2024, 38(13): 22110123-7.
[6] 何绪林, 叶勤燕, 罗坤, 郑兴平, 冉小龙, 廖成. 高精准度检测紧固件轴向预紧力的薄膜压电传感器的研究[J]. 材料导报, 2023, 37(7): 21080201-4.
[7] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[8] 满世甲, 杜雪岩, 申永前, 龙建. 镍渣衍生Fe3O4/聚苯胺复合材料的制备及微波吸收性能研究[J]. 材料导报, 2023, 37(22): 22030093-6.
[9] 吴海华, 杨增辉, 刘力, 张忍静, 邓开鑫, 李言. 三层石墨烯吸波体熔融沉积成形及层间材料分布对吸波性能的影响[J]. 材料导报, 2023, 37(2): 21080161-7.
[10] 潘权子, 刘文晓, 孟则达, 罗莉, 刘守清. 压电增强二硫化钼/氧化锌近红外光催化降解氨氮[J]. 材料导报, 2023, 37(19): 22030259-7.
[11] 何恩义, 殷诗浩, 叶永盛, 丁迪, 胡正浪, 吴海华. 微乳液法制备石墨烯-羰基铁粉复合微球及其吸波性能[J]. 材料导报, 2023, 37(17): 22010129-8.
[12] 陈晶亮, 栾丽君, 张茹, 张研, 杨云, 刘剑, 田野, 魏星, 樊继斌, 段理. Ⅱ型C2N/ZnO异质结水分解光催化剂的第一性原理研究[J]. 材料导报, 2023, 37(11): 21110258-8.
[13] 李威霖, 陈玲, 王佳, 袁凯, 焦剑. Fe3O4-GO复合纳米纸的制备及吸波性能研究[J]. 材料导报, 2023, 37(1): 21080126-7.
[14] 陈亮, 陈少文, 袁振亮, 李启凡, 马会茹, 陈志宏, 李维, 官建国. 有机氟包覆片状FeSiAl吸收剂及其吸波性能[J]. 材料导报, 2022, 36(9): 21030255-6.
[15] 马超, 余飞, 孙翼飞, 袁欢, 徐明. 具有高催化活性的Ag复合Sm∶ZnO纳米复合材料的制备、表征以及光催化机理研究[J]. 材料导报, 2022, 36(8): 21010244-8.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed