Please wait a minute...
材料导报  2025, Vol. 39 Issue (10): 24030121-5    https://doi.org/10.11896/cldb.24030121
  金属与金属基复合材料 |
阴极碳靶电流对物理气相沉积制备ta-C薄膜性能的影响
温鑫1, 李多生1,*, 叶寅1, 徐锋2, 郎文昌3, 刘俊红3, 于爽爽1, 余欣秀1
1 南昌航空大学材料科学与工程学院,南昌 330063
2 南京航空航天大学机电学院,南京 210016
3 苏州艾钛科纳米科技有限公司,江苏 苏州 215163
Effect of Cathode Carbon Target Current on Properties of ta-C Thin Films Prepared by Physical Vapor Deposition
WEN Xin1, LI Duosheng1,*, YE Yin1, XU Feng2, LANG Wenchang3, LIU Junhong3, YU Shuangshuang1, YU Xinxiu1
1 School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2 School of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
3 Suzhou Ion-tech Nano Technology Co., Ltd., Suzhou 215163, Jiangsu, China
下载:  全 文 ( PDF ) ( 7609KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用物理气相沉积的方法,利用真空阴极离子沉积系统,通过改变阴极碳靶电流在硬质合金表面沉积四面体非晶碳膜(ta-C)薄膜。通过改变阴极碳靶电流(55~95 A),探究电流对ta-C薄膜综合性能的影响,并对ta-C薄膜的表面形态、化学结构、力学性能和摩擦性能等进行了分析。结果显示:阴极碳靶电流为55 A时,薄膜表面最光滑致密,sp3键含量最大为63.5%,摩擦系数最小为0.019 3,硬度和弹性模量分别为33.46 GPa和392.34 GPa,获得综合性能优良的ta-C薄膜。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
温鑫
李多生
叶寅
徐锋
郎文昌
刘俊红
于爽爽
余欣秀
关键词:  阴极碳靶电流  ta-C薄膜  sp3杂化键含量  摩擦性能  力学性能    
Abstract: In this work, tetrahedral amorphous carbon (ta-C) film was deposited on the surface of cemented carbide by changing the cathode carbon target current using a vacuum cathode ion deposition system. By changing the cathode carbon target current (55—95 A), the effect of current on the comprehensive properties of ta-C films was explored. The surface morphology, chemical structure, mechanical properties, and friction properties of ta-C films were analyzed. The results showed that when the cathode carbon target current was 55 A, the surface of the film was the smoothest and densest, the sp3 hybrid bond content was the maximum 63.5%, the friction coefficient was the minimum 0.019 3, and the hardness and elastic modulus were 33.46 GPa and 392.34 GPa respectively. ta-C films with excellent comprehensive properties could be obtained.
Key words:  cathode carbon target current    ta-C film    sp3 hybrid bond content    frictional property    mechanical property
出版日期:  2025-05-25      发布日期:  2025-05-13
ZTFLH:  TG174  
基金资助: 国家自然科学基金(51562027;52375441);江西省重点研发计划重点项目(20201BBE51001);江苏省重点研发计划(产业前瞻与关键核心技术)(BE2021055)
通讯作者:  *李多生,博士,南昌航空大学材料科学与工程学院教授。研究领域为新型碳纳米材料、新型电子封装、3D打印及激光表面工程及数值仿真等。duosheng.li@nchu.edu.cn   
作者简介:  温鑫,南昌航空大学材料科学与工程学院硕士研究生,在李多生教授的指导下进行研究。目前主要研究领域为新型碳纳米材料。
引用本文:    
温鑫, 李多生, 叶寅, 徐锋, 郎文昌, 刘俊红, 于爽爽, 余欣秀. 阴极碳靶电流对物理气相沉积制备ta-C薄膜性能的影响[J]. 材料导报, 2025, 39(10): 24030121-5.
WEN Xin, LI Duosheng, YE Yin, XU Feng, LANG Wenchang, LIU Junhong, YU Shuangshuang, YU Xinxiu. Effect of Cathode Carbon Target Current on Properties of ta-C Thin Films Prepared by Physical Vapor Deposition. Materials Reports, 2025, 39(10): 24030121-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030121  或          https://www.mater-rep.com/CN/Y2025/V39/I10/24030121
1 Fan S Y, Kuang T C, Lin S S, et al. Materials Reports, 2023, 37(8), 24 (in Chinese).
范舒瑜, 匡同春, 林松盛, 等. 材料导报, 2023, 37(8), 24.
2 Ma L J, Tan F H, Li D Z, et al. Tool Technology, 2017, 51(5), 26 (in Chinese).
马廉洁, 谭福慧, 李德震, 等. 工具技术, 2017, 51(5), 26.
3 Liu K, Kang J J, Yue W, et al. Materials Reports, 2019, 33(19), 3251 (in Chinese).
刘康, 康嘉杰, 岳文, 等. 材料导报, 2019, 33(19), 3251.
4 Ding Y Z, Ye Y, Li D S, et al. Acta Physica Sinica, 2023, 72(6), 367(in Chinese).
丁业章, 叶寅, 李多生, 等. 物理学报, 2023, 72(6), 367.
5 Chen X Y. Petrochemical Technology, 2020, 27(8), 13 (in Chinese).
陈行易. 石化技术, 2020, 27(8), 13.
6 Erdemir A. Tribology International, 2004, 37(11-12), 1005.
7 Li J, Tong H H, Wang K, et al. Journal of Functional Materials, 2020, 51(8), 8204 (in Chinese).
李健, 童洪辉, 王坤, 等. 功能材料, 2020, 51(8), 8204.
8 Vetter J. Surface and Coatings Technology, 2014, 257(10), 213.
9 Ferreira R, Martins J, Carvalho Ó, et al. Materials and Manufacturing Processes, 2020, 35(5), 498.
10 Wang M L, Cheng W J, Lin G Q. Rare Metal Materials and Engineering, 2022, 51(8), 3095 (in Chinese).
王明磊, 程玮杰, 林国强. 稀有金属材料与工程, 2022, 51(8), 3095.
11 Wei J, Guo P, Liu L, et al. Applied Surface Science, 2020, 516, 146115.
12 Frolov V D, Zavedeev E V, Komlenok M S, et al. Nanotechnologies in Russia, 2016, 11, 461.
13 Ferrari A C, Kleinsorge B, Morrison N A, et al. Journal of Applied Physics, 1999, 85(10), 7191.
14 Zavaleyev V, Walkowicz J, Kuznetsova T, et al. Thin Solid Films, 2017, 638, 153.
15 Etula J, Wester N, Sainio S, et al. RSC Advances, 2018, 8(46), 26356.
16 Han L, Shao H X, He L, et al. Acta Physica Sinica, 2012, 61(10), 349 (in Chinese).
韩亮, 邵鸿翔, 何亮, 等. 物理学报, 2012, 61(10), 349.
17 Guo T, Zuo X, Guo P, et al. Surface Technology, 2017, 46(4), 143.
郭婷, 左潇, 郭鹏, 等. 表面技术, 2017, 46(4), 143.
18 Wu Y R, Xie F, Zhang Y X, et al. Heat Treatment of Metals, 2022, 47(6), 202 (in Chinese).
吴一若, 谢峰, 张月霞, 等. 金属热处理, 2022, 47(6), 202.
19 Yan S F. Research on modification of medical metal materials coated with diamond film. Master’s Thesis, Sichuan University, China, 2004 (in Chinese).
闫双峰. 金刚石薄膜涂覆医用金属材料的改性研究. 硕士学位论文, 四川大学, 2004.
20 Ding J C, Dai W, Zhang T F, et al. Thin Solid Films, 2018, 663, 159.
21 Guo T, Kong C, Li X, et al. Applied Surface Science, 2017, 410, 51.
22 Xue Q J, Wang L P. Diamond-like carbon-based thin film materials, Science Press, China, 2012, pp.471 (in Chinese).
薛群基, 王立平. 类金刚石碳基薄膜材料, 北京科学出版社, 2012, pp.471.
23 Kong C, Guo P, Sun L, et al. Surface and Coatings Technology, 2018, 342, 167.
24 Zhao F, Li H, Ji L, et al. Diamond and Related Materials, 2010, 19(4), 342.
25 Liu Y, Erdemir A, Meletis E I. Surface and Coatings Technology, 1996, 86, 564.
26 Pang X, Shi L, Wang P, et al. Surface and Interface Analysis 2009, 41(12-13), 924.
27 Chang C L, Jao J Y, Chang T C, et al. Diamond and Related Materials, 2005, 14(11-12), 2127.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed