Please wait a minute...
材料导报  2025, Vol. 39 Issue (10): 24030018-4    https://doi.org/10.11896/cldb.24030018
  金属与金属基复合材料 |
TiN纳米颗粒增强Sn焊点的性能与组织研究
孙磊1,2, 何鹏2,*, 张亮3, 张墅野2, 王文昊1, 张潘杰1
1 常州大学机械与轨道交通学院,江苏 常州 213164
2 哈尔滨工业大学材料结构精密焊接与连接全国重点实验室,哈尔滨 150001
3 厦门理工学院材料科学与工程学院,福建 厦门 361024
Properties and Microstructure of Sn Solder Joint Reinforced by TiN Nanoparticles
SUN Lei1,2, HE Peng2,*, ZHANG Liang3, ZHANG Shuye2, WANG Wenhao1, ZHANG Panjie1
1 School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, Jiangsu, China
2 State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
3 School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, Fujian, China
下载:  全 文 ( PDF ) ( 14972KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过接触角测量仪、万能拉伸试验机以及扫描电镜(SEM)等测试方法,研究了Sn-xTiN(x=0,0.05,0.1,0.2,0.3,0.4, 质量分数,%)焊点的润湿性、力学性能以及微观组织。结果表明,在Sn钎料中加入TiN纳米颗粒后,钎料的润湿性得到显著提高,焊点的力学性能也得到增强。当TiN纳米颗粒的加入量达到0.2%时,钎料的润湿角由初始的16.5°下降到13.8°,降幅为16.4%,焊点的剪切强度提高24.0%。对于微观组织,随着TiN纳米颗粒的加入,Sn-xTiN/Cu焊点界面金属间化合物(IMC)的厚度由初始的6.5 μm下降到5.8 μm。继续增加TiN纳米颗粒的加入量,焊点界面IMC厚度则会逐渐上升。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙磊
何鹏
张亮
张墅野
王文昊
张潘杰
关键词:  焊点  TiN纳米颗粒  润湿角  微观组织    
Abstract: The wettability, mechanical properties and microstructure of Sn-xTiN (x=0, 0.05, 0.1, 0.2, 0.3, 0.4, mass fraction, %) solder were stu-died by contact angle measuring instrument, universal testing machine and scanning electron microscopy (SEM). The results show that the wettability and the mechanical properties of the Sn solder joint are enhanced significantly by adding TiN nanoparticles. When the addition content of TiN nanoparticles reaches 0.2%, the contact angle of the solder decreases from the initial 16.5° to 13.8°, a decrease of 16.4%, and the shear strength of solder joint increases by 24.0%. For microstructures, the thickness of intermetallic compound (IMC) in Sn-xTiN/Cu solder joints decreases from the initial 6.5 μm to 5.8 μm with the addition of TiN nanoparticles. However, the interfacial IMC thickness of solder joints gradually increases with the addition of TiN nanoparticles.
Key words:  solder joint    TiN nanoparticles    contact angle    microstructure
出版日期:  2025-05-25      发布日期:  2025-05-13
ZTFLH:  TG454  
基金资助: 国家自然科学基金(52305338;U21A20128);江苏省自然科学基金(BK20210853);中国博士后科学基金(2023M741485);江苏省青年科技人才托举工程(JSTJ-2024-027);常州市科技计划项目(CJ20230033)
通讯作者:  *何鹏,哈尔滨工业大学材料科学与工程学院教授、博士研究生导师、先进焊接与连接国家重点实验室主任。目前主要从事钎焊、微连接、新材料及异种材料连接界面行为与控制的研究。hepeng@hit.edu.cn   
作者简介:  孙磊,常州大学机械与轨道交通学院副教授、硕士研究生导师。目前主要从事钎焊、电子封装技术研究。
引用本文:    
孙磊, 何鹏, 张亮, 张墅野, 王文昊, 张潘杰. TiN纳米颗粒增强Sn焊点的性能与组织研究[J]. 材料导报, 2025, 39(10): 24030018-4.
SUN Lei, HE Peng, ZHANG Liang, ZHANG Shuye, WANG Wenhao, ZHANG Panjie. Properties and Microstructure of Sn Solder Joint Reinforced by TiN Nanoparticles. Materials Reports, 2025, 39(10): 24030018-4.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030018  或          https://www.mater-rep.com/CN/Y2025/V39/I10/24030018
1 Wang S Q, Zou G S, Liu L. Transactions of the China Welding Institution, 2022, 43(11), 112 (in Chinese).
王帅奇, 邹贵生, 刘磊. 焊接学报, 2022, 43(11), 112.
2 Liu Y X, Lu Y, Tu K N. Materials Science & Engineering:R:Reports, 2022, 151, 100701.
3 Tian Y, Fang H, Ren N, et al. Journal of Alloys and Compounds, 2020, 828, 154468.
4 Sun L, Zhang Y, Chen M H, et al. Transactions of the China Welding Institution, 2021, 42(1), 49 (in Chinese).
孙磊, 张屹, 陈明和, 等. 焊接学报, 2021, 42(1), 49.
5 Chen Y, Dai W J, Liu Y X, et al. Materials & Design, 2022, 224, 111318.
6 Hsu S Y, Chen C M, Song J M, et al. Materials Chemistry and Physics, 2022, 277, 125621.
7 Chen W Y, Song R W, Duh J G. Intermetallics, 2017, 85, 170.
8 Lai Y Q, Xu R S, Chen S, et al. Journal of Materials Research and Technology, 2023, 24, 6146.
9 Sun L, Chen M H, Zhang L, et al. Journal of Materials Processing Technology, 2020, 278, 116507.
10 Xu K K, Zhang L, Sun L, et al. Materials Transactions, 2020, 61, 718.
11 Yang T L, Yu J J, Shih W L, et al. Journal of Alloys and Compounds, 2014, 605, 193.
12 Li M L, Zhang L, Jiang N, et al. Journal of Materials Science:Materials in Electronics, 2021, 32, 18067.
13 Zhang L, Fan X Y, Guo Y H, et al. Materials & Design, 2014, 57, 646.
14 Gao L L. Effect of Pr and/or Nd on the microstructures and properties of SnAgCu solder. Ph. D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2012 (in Chinese).
皋利利. 稀土Pr和Nd对SnAgCu无铅钎料组织与性能影响研究. 博士学位论文, 南京航空航天大学, 2012.
15 Sun L, Chen M H, Zhang L. Journal of Alloys and Compounds, 2019, 786, 677.
16 Wu J, Xue S B, Wang J W, et al. Journal of Alloys and Compounds, 2019, 784, 471.
17 Sun L, Chen M H, Xie L S, et al. Transactions of the China Welding Institution, 2018, 39(8), 47 (in Chinese).
孙磊, 陈明和, 谢兰生, 等. 焊接学报, 2018, 39(8), 47.
[1] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[2] 姚未怡, 卜恒勇. 轧制态7050铝合金双道次热变形微观组织演变[J]. 材料导报, 2025, 39(4): 23120032-8.
[3] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[4] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[5] 张兵宪, 陈素明, 贺韡, 牛鹏亮, 黄春平. 补焊对7050-T7451高强铝合金搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2025, 39(10): 24040146-6.
[6] 张建波, 沈琪飞, 尹宁康, 张晋涵, 刘敬萱. Ni/P质量比对Cu-Ni-P合金组织和性能的影响[J]. 材料导报, 2025, 39(10): 24030240-6.
[7] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[8] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[9] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[10] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[11] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[12] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[13] 朱轩,杨晓益, 陆鑫, 杨书汉. 电弧脉冲对6005A-T6铝合金CMT-P焊接接头组织和性能的影响[J]. 材料导报, 2024, 38(23): 23090035-7.
[14] 王沛锦, 卓家乐, 艾桃桃, 董洪峰. L12型纳米有序相析出强化(FeNiCoCr)93Al5Ti2高熵合金[J]. 材料导报, 2024, 38(22): 23110207-5.
[15] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed