Please wait a minute...
材料导报  2025, Vol. 39 Issue (10): 24030240-6    https://doi.org/10.11896/cldb.24030240
  金属与金属基复合材料 |
Ni/P质量比对Cu-Ni-P合金组织和性能的影响
张建波1, 沈琪飞1,2, 尹宁康1,2, 张晋涵1,2, 刘敬萱1,2,*
1 江西理工大学材料冶金化学学部,江西 赣州 341000
2 江西先进铜产业研究院,江西 鹰潭 335000
Effect of Ni/P Mass Ratio on Microstructure and Properties of Cu-Ni-P Alloy
ZHANG Jianbo1, SHEN Qifei1,2, YIN Ningkang1,2, ZHANG Jinhan1,2, LIU Jingxuan1,2,*
1 Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
2 Jiangxi Advanced Copper Industry Research Institute, Yingtan 335000, Jiangxi, China
下载:  全 文 ( PDF ) ( 44985KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作结合相图计算设计制备了不同Ni/P质量比的Cu-Ni-P合金。借助金相(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、硬度和导电率试验,研究了Ni/P质量比对合金组织和性能的影响,建立了析出相的演变与硬度和导电率的关系。结果表明,Ni/P质量比对合金的硬度和导电率有显著影响。其中Ni/P质量比为4时,合金在500 ℃下时效3 h时硬度和导电率分别达到171HV和61.8%IACS的最大值。P含量的增加促进了Ni原子从Cu基体中析出,降低了溶质原子的浓度,从而提高了合金的导电性。在时效初期,球状的NiP3相大量存在是合金硬度上升的主要原因。随着时效的进行,合金中的析出相逐渐演变为球状的NiP2相和短棒状的Ni2P相。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张建波
沈琪飞
尹宁康
张晋涵
刘敬萱
关键词:  Cu-Ni-P合金  Ni/P质量比  硬度  导电率  微观组织    
Abstract: The Cu-Ni-P alloys were designed and prepared with varying Ni/P mass ratios based on phase diagrams. The effects of the Ni/P mass ratio on the microstructure and properties of the alloys were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), hardness and conductivity tests. In addition, the correlation between the evolution of precipitated phase and the hardness and conductivity has been established. The results show that the Ni/P mass ratio has a significant impact on the both hardness and conductivity of the alloy. After aging at 500 ℃ for 3 h, the hardness and conductivity of the alloy with a Ni/P mass ratio of 4 reached the maximum of 171HV and 61.8%IACS, respectively. The increase in P content facilitates the precipitation of Ni atoms from the copper matrix, thereby reducing the concentration of solute atoms and ultimately enhancing the electrical conductivity of the alloy. In the early stage of aging, abundant spheroidal NiP3 phase formation serves as a primary factor contributing to increased alloy hardness. During the aging process, the precipitates in the alloy gradually transforms into spherical NiP2 and short rod-like Ni2P phases.
Key words:  Cu-Ni-P alloy    Ni/P mass ratio    hardness    electrical conductivity    microstructure
出版日期:  2025-05-25      发布日期:  2025-05-13
ZTFLH:  TG146.1  
基金资助: 江西理工大学高层次人才科研启动基金(205200100541);江西省教育厅科技项目(GJJ210872);国家铜冶炼与工艺工程技术研究中心资助项目(20231ZDD0205)
通讯作者:  *刘敬萱,博士,江西理工大学材料冶金化学学部讲师。目前主要从事高性能有色金属结构材料组织与性能调控方向的研究。liujingxuan90@126.com   
作者简介:  张建波,博士,江西理工大学材料冶金化学学部教授。主要研究方向:(1)高强高导铜合金的研究与开发;(2)高性能钨铜复合材料的开发与应用。
引用本文:    
张建波, 沈琪飞, 尹宁康, 张晋涵, 刘敬萱. Ni/P质量比对Cu-Ni-P合金组织和性能的影响[J]. 材料导报, 2025, 39(10): 24030240-6.
ZHANG Jianbo, SHEN Qifei, YIN Ningkang, ZHANG Jinhan, LIU Jingxuan. Effect of Ni/P Mass Ratio on Microstructure and Properties of Cu-Ni-P Alloy. Materials Reports, 2025, 39(10): 24030240-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030240  或          https://www.mater-rep.com/CN/Y2025/V39/I10/24030240
1 Miao Y, Gan C, Jin W, et al. Journal of Alloys and Compounds, 2024, 983, 173818.
2 Wu X, Zhang J, Zhao J, et al. Materials Characterization, 2023, 205, 113213.
3 Chen J, Xiao X, Guo C, et al. Journal of Alloys and Compounds, 2022, 926, 166836.
4 Zhou J, Zhu D, Tang L, et al. Vacuum, 2016, 131, 156.
5 Li J, Ding H, Li B, et al. Materials Science and Engineering:A, 2021, 819, 141464.
6 Meng A, Nie J, Wei K, et al. Vacuum, 2019, 167, 329.
7 Liu Q, Zhang X, Ge Y, et al. Metallurgical and Materials Transactions A, 2006, 37, 3233.
8 Chen J S. Research on preparation of Cu-Cr-Zr alloy based on vacuum horizontal continuous casting and the microstructure evolution and property regulation of its wire. Ph. D. Thesis, Jiangxi University of Science and Technology, China, 2023 (in Chinese).
陈金水. 基于真空水平连铸制备Cu-Cr-Zr合金及其线材组织演变与性能调控研究. 博士学位论文, 江西理工大学, 2023.
9 Huang S, Zhou P, Luo F, et al. Materials Characterization, 2023, 199, 112775.
10 Liao X, Li L, Ren K, et al. Journal of Materials Research and Technology, 2023, 26, 2060.
11 Gu Y, Shi R, Zhu Q, et al. Corrosion Science, 2023, 221, 111339.
12 Hao Y, Xu X, Wu Q, et al. Journal of Materials Research and Technology, 2023, 26, 654.
13 Tian J T. Nonferrous Metals Engineering and Research, 2016, 37(6), 27 (in Chinese).
田军涛. 有色冶金设计与研究, 2016, 37(6), 27.
14 Ma P. Heat Treatment, 2016, 31(3), 7 (in Chinese).
马鹏. 热处理, 2016, 31(3), 7.
15 Guo C, Shi Y, Xiao X, et al. Journal of Alloys and Compounds, 2022, 923, 166410.
16 Liu J, Wang X, Guo T, et al. International Journal of Minerals, Metallurgy, and Materials, 2015, 22, 1199.
17 Zhu Y, Yu Q, Peng L, et al. Materials Science and Engineering:A, 2024, 893, 146098.
18 Aruga Y, Saxey D W, Marquis E A, et al. Ultramicroscopy, 2011, 111(6), 725.
19 Murayama M, Belyakov A, Hara T, et al. Journal of Electronic Materials, 2006, 35, 1787.
20 Hu T, Chen W, Yan N, et al. Journal of Alloys and Compounds, 2017, 729, 84.
21 Aruga Y, Morikawa Y, Tamaoka S, et al. Scripta Materialia, 2012, 66(9), 686.
22 Aruga Y, Saxey D W, Marquis E A, et al. Metallurgical and Materials Transactions A, 2009, 40, 2888.
23 Fu H, Zhang Y, Zhang M, et al. Journal of Materials Processing Technology, 2023, 317, 117986.
24 Jia Y, Pang Y, Yi J, et al. Journal of Alloys and Compounds, 2023, 942, 169033.
[1] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[2] 姚未怡, 卜恒勇. 轧制态7050铝合金双道次热变形微观组织演变[J]. 材料导报, 2025, 39(4): 23120032-8.
[3] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[4] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[5] 孙磊, 何鹏, 张亮, 张墅野, 王文昊, 张潘杰. TiN纳米颗粒增强Sn焊点的性能与组织研究[J]. 材料导报, 2025, 39(10): 24030018-4.
[6] 张兵宪, 陈素明, 贺韡, 牛鹏亮, 黄春平. 补焊对7050-T7451高强铝合金搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2025, 39(10): 24040146-6.
[7] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[8] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[9] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[10] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[11] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[12] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[13] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[14] 朱轩,杨晓益, 陆鑫, 杨书汉. 电弧脉冲对6005A-T6铝合金CMT-P焊接接头组织和性能的影响[J]. 材料导报, 2024, 38(23): 23090035-7.
[15] 王沛锦, 卓家乐, 艾桃桃, 董洪峰. L12型纳米有序相析出强化(FeNiCoCr)93Al5Ti2高熵合金[J]. 材料导报, 2024, 38(22): 23110207-5.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed