Please wait a minute...
材料导报  2025, Vol. 39 Issue (10): 24040146-6    https://doi.org/10.11896/cldb.24040146
  金属与金属基复合材料 |
补焊对7050-T7451高强铝合金搅拌摩擦焊接头组织与性能的影响
张兵宪1, 陈素明1, 贺韡3, 牛鹏亮2,*, 黄春平4
1 中航西安飞机工业集团股份有限公司,西安 710089
2 南昌航空大学材料科学与工程学院,南昌 330063
3 空军装备部驻西安地区第一军事代表室,西安 710089
4 中国航空研究院研究生院,江苏 扬州 225111
Effect of Repair Welding on the Microstructure and Mechanical Properties of Friction Stir Welded 7050-T7451 Aluminum Alloy Joints
ZHANG Bingxian1, CHEN Suming1, HE Wei3, NIU Pengliang2,*, HUANG Chunping4
1 Avic Xi’an Aircraft Industry Group Company. Ltd, Xi’an 710089, China
2 School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
3 First Military Representative Office of Air Force Equipment Department in Xi’an Region, Xi’an 710089, China
4 Graduate School of Chinese Aeronautical Establishment, Yangzhou 225111, Jiangsu, China
下载:  全 文 ( PDF ) ( 52616KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用优化焊接工艺参数对7050-T7451高强铝合金搅拌摩擦焊接头进行了1—4次的搅拌摩擦补焊,补焊工艺参数为旋转速度600 r/min、焊接速度150 mm/min。采用光学显微镜、扫描电镜、差示量热扫描仪、显微硬度和室温拉伸对不同补焊次数接头的宏-微观组织、力学性能和断裂行为进行了分析。结果表明,在不同补焊次数下均可获得内部无缺陷的接头。搅拌区宽度随补焊次数的增加而增加。补焊后,第二相颗粒的尺寸呈减小趋势,且分布更为弥散。补焊2次接头的拉伸性能最好,抗拉强度和伸长率分别为520 MPa和8.2%,相比原焊态接头,抗拉强度和伸长率分别提升了25 MPa和46.4%。当补焊4次时,接头的断裂位置从搅拌区转移到前进侧热影响区。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张兵宪
陈素明
贺韡
牛鹏亮
黄春平
关键词:  7050-T7451铝合金  搅拌摩擦焊  补焊  微观组织  力学性能    
Abstract: In order to eliminate the micro-voids in the stir zone of friction stir welded 7050-T7451 aluminum alloy, 1 to 4 times of repair welding with optimized friction stir welding parameters were conducted to repair the stir zone. The repairing parameters are tool rotational rate 600 r/min, welding speed 150 mm/min. The optical microscope, scanning electron microscope, differential scanning calorimeter, microhardness tests and tensile tests at room temperature were utilized to characterize the macro/microstructure, tensile properties and fracture behavior of the repaired joints. Results indicate that sound joints without inner flaws can be obtained. The width of stir zone was increases with the increase of repairing times. The size of second phase particles decreases and homogeneously distributes after repairing. After two times repairing, the joint has the hig-hest tensile properties with tensile strength of 520 MPa and elongation of 8.2%, which are 25 MPa and 46.4% higher than those of the as-welded joint. The fracture location of joint altered from the stir zone to the heat affected zone on the retreating side when four times repairing was conducted.
Key words:  7050-T7451 aluminum alloy    friction stir welding    repair welding    microstructure    mechanical property
出版日期:  2025-05-25      发布日期:  2025-05-13
ZTFLH:  TG453.9  
通讯作者:  *牛鹏亮,南昌航空大学材料科学与工程学院副教授、硕士研究生导师。目前主要从事轻合金搅拌摩擦焊接/增材制造、电子束增材制造和焊接接头疲劳可靠性评价等方面的研究工作。penglniu@nchu.edu.cn   
作者简介:  张兵宪,中航西安飞机工业集团股份有限公司高级工程师。目前主要研究领域为航空材料的研发与焊接。
引用本文:    
张兵宪, 陈素明, 贺韡, 牛鹏亮, 黄春平. 补焊对7050-T7451高强铝合金搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2025, 39(10): 24040146-6.
ZHANG Bingxian, CHEN Suming, HE Wei, NIU Pengliang, HUANG Chunping. Effect of Repair Welding on the Microstructure and Mechanical Properties of Friction Stir Welded 7050-T7451 Aluminum Alloy Joints. Materials Reports, 2025, 39(10): 24040146-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040146  或          https://www.mater-rep.com/CN/Y2025/V39/I10/24040146
1 Wang G J, Wang Z T. Light Alloy Fabrication Technology, 2017, 45(11), 1 (in Chinese).
王国军, 王祝堂. 轻合金加工技术, 2017, 45(11), 1.
2 Zhang X, Han D, Wu J, et al. Aerospace Manufacturing Technology, 2018(3), 6 (in Chinese).
张鑫, 韩冬, 吴军, 等. 航天制造技术, 2018(3), 6.
3 Deng C Y, Gao R, Gong B M, et al. Transactions of The China Welding Institution, 2019, 39(11), 114 (in Chinese).
邓彩艳, 高仁, 龚宝明, 焊接学报, 2019, 39(11), 114.
4 Liu Y, Deng C, Gong B, et al. Materials Science and Engineering:A, 2019, 764, 138223.
5 Cao L J. Surface Technology, 2009, 38(3), 68 (in Chinese).
曹丽杰. 表面技术, 2009, 38(3), 68.
6 Liu B, Peng C Q, Wang R C, et al. The Chinese Journal of Nonferrous Metals, 2010, 20(9), 1705 (in Chinese).
刘兵, 彭超群, 王日初, 等. 中国有色金属学报, 2010, 20(9), 1705.
7 Cheng J, Li J L, Xie H, et al. Ordnance Material Science and Engineering, 2008, 31(5), 27 (in Chinese).
成军, 李建莉, 谢辉, 等. 兵器材料科学与工程, 2008, 31(5), 27.
8 Tu J F, Paleocrassas A G. Journal of Materials Processing Technology, 2011, 211(1), 95.
9 Padovani C, Davenport A J, Connolly B J, et al. Corrosion Science, 2011, 53(12), 3956.
10 Li B, Shen Y. Materials & Design, 2011, 32(7), 3796.
11 Yang S Y, Liu D D. Chinese Journal of Rare Metals, 2014, 38(5), 896 (in Chinese).
杨素媛, 刘冬冬. 稀有金属, 2014, 38(5), 896.
12 Tan J H, Zhao Y Q, Wang C G, et al. MW Metal Forming, 2020(1), 8 (in Chinese).
谭锦红, 赵运强, 王春桂, 等. 金属加工 (热加工), 2020(1), 8.
13 Reimann M, Goebel J, Dos Santos J F. Materials & Design, 2017, 132, 283.
14 Shen Z, Yang X, Zhang Z, et al. Materials & Design, 2013, 44, 476.
15 Jin Y H, Zhang L, Zhang L L, et al. Materials Reports, 2020, 34(20), 20107 (in Chinese).
金玉花, 张林, 张亮亮, 等. 材料导报, 2020, 34(20), 20107.
16 Chen C, Niu P L, Huang C P, et al. Materials Letters, 2023, 347, 134624.
17 Kwee I, de Waele W, Faes K. Welding in the World, 2019, 63(4), 1001.
18 Zhang D, Chen W H, Sun Y H, et al. Journal of Aeronautical Materials, 2013, 33(1), 45 (in Chinese).
张聃, 陈文华, 孙耀华, 等. 航空材料学报, 2013, 33(1), 45.
19 Xing L, Ke L M, Liu G P, et al. Transactions of the China Welding Institution, 2002, 23(6), 55 (in Chinese).
邢丽, 柯黎明, 刘鸽平, 等. 焊接学报, 2002, 23(6), 55.
20 Zhou L, Han K, Liu C L, et al. Journal of Aeronautical Materials, 2016, 36(1), 26 (in Chinese).
周利, 韩柯, 刘朝磊, 等. 航空材料学报, 2016, 36(1), 26.
21 Brown R, Tang W, Reynolds A P. Materials Science and Engineering:A, 2009, 513, 115.
22 Fu R D, Sun Z Q, Sun R C, et al. Materials & Design, 2011, 32(10), 4825.
23 Liu H, Hu Y, Dou C, et al. Materials Characterization, 2017, 123, 9.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed