Please wait a minute...
材料导报  2025, Vol. 39 Issue (10): 24030013-6    https://doi.org/10.11896/cldb.24030013
  无机非金属及其复合材料 |
空间光学敏感器透射镜组胶粘技术
杨宇1,*, 王伟华2,*, 李连升1, 张尧2, 迟百宏2, 贾怡2
1 北京控制工程研究所,北京 100190
2 中国航天科技创新研究院,北京 100088
Adhesive Technology of Space Optical Sensor Transmissive Mirror Group
YANG Yu1,*, WANG Weihua2,*, LI Liansheng1, ZHANG Yao2, CHI Baihong2, JIA Yi2
1 Beijing Institute of Control Engineering, Beijing 100190, China
2 China Aerospace Science and Technology Innovation Research Institute, Beijing 100088, China
下载:  全 文 ( PDF ) ( 25087KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 空间光学敏感器是航天器的重要组成部分,其在极端空间环境下可靠工作是空间活动和任务正常开展的保障。空间光学敏感器的核心在于光学系统的制造,目前空间光学敏感器最普遍采用的是中小口径透射式光学系统,这要求各光学元件之间进行精密的装配制造。与机械紧固件连接方式相比,胶粘方式在中小口径透射式光学系统制造中更具潜力,然而胶粘方式在面向航天应用的光学敏感器光学系统制造中鲜有提及。系统研究了面向空间光学敏感器光学系统的透射镜组胶粘技术,通过应力仿真与面形分析确定了XM31作为下层胶粘剂、DP460作为上层胶粘剂的用胶组合,通过L9(34)正交试验及极差/方差分析确定了包边后面形大小的主要影响因素是包边材料和下层涂胶面积,通过热真空、温度循环、力学环境适应性试验等空间环境地面模拟实验评估了该技术的可靠性,最终确定了最优胶粘技术参数。本工作对后续空间光学敏感器透射镜组装配技术研究有很强的指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨宇
王伟华
李连升
张尧
迟百宏
贾怡
关键词:  空间光学敏感器  透射镜组  胶粘技术    
Abstract: Space optical sensors are very important parts of the spacecraft, and their reliable operation in the extreme space environment is the guarantee for the normal conduct of space activities and missions. The core of the space optical sensor lies in the manufacture of the optical system, and the current space optical sensor most commonly adopts a small and medium-aperture transmissive optical system, which requires precise assembly of the optical components. Compared with the connection method of mechanical fasteners, the adhesive method has more potential in the manufacture of small and medium-aperture transmissive optical systems; however, the adhesive method is rarely mentioned in the manufacture of optical lens systems for aerospace. In this work, the adhesive technology of the transmissive lens group for the optical system of the space optical sensor was systematically studied, the adhesive combination of XM31 as the lower layer adhesive and DP460 as the upper layer adhesive is determined through stress simulation and surface shape analysis, and the main factors influencing the shape size after the hemming are determined by L9(34) orthogonal test and range/variance analysis, and the reliability of the technology is evaluated by the space environment ground simulation experiment including thermal vacuum, temperature cycling, mechanical environment adaptability test, and the optimal adhesive technical parameters are finally determined. This research provides strong guidance for the adhesive technology of the transmission mirror group of space optical sensors in the future.
Key words:  space optical sensor    transmissive mirror group    adhesive technology
出版日期:  2025-05-25      发布日期:  2025-05-13
ZTFLH:  V448  
通讯作者:  *杨宇,北京控制工程研究所高级工程师。目前主要从事空间光学部组件及超材料空间应用技术研究。catztt@126.com;王伟华,博士,中国航天科技创新研究院工程师。目前主要从事光热超材料技术方面的研究,包括空间态势感知材料及器件、航天器光热智能调控等。weihuawang2011@163.com   
引用本文:    
杨宇, 王伟华, 李连升, 张尧, 迟百宏, 贾怡. 空间光学敏感器透射镜组胶粘技术[J]. 材料导报, 2025, 39(10): 24030013-6.
YANG Yu, WANG Weihua, LI Liansheng, ZHANG Yao, CHI Baihong, JIA Yi. Adhesive Technology of Space Optical Sensor Transmissive Mirror Group. Materials Reports, 2025, 39(10): 24030013-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030013  或          https://www.mater-rep.com/CN/Y2025/V39/I10/24030013
1 He F, Wang F, Dou W, et al. In:Proceedings of the 10th Academic Annual Conference of the Deep Space Exploration Technology Professional Committee of the Chinese Aerospace Society. Beijing, China, 2014, pp.328 (in Chinese).
何峰, 王峰, 窦伟, 等. 中国宇航学会深空探测技术专业委员会第十届学术年会论文集. 北京, 2014, pp.328.
2 Hao Y C. Aerospace Control and Application, 2017, 43(4), 9 (in Chinese).
郝云彩. 空间控制技术与应用, 2017, 43(4), 9.
3 Zhang H F, Sun Y, Li C J, et al. Aerospace Control and Application, 2020, 46(2), 80 (in Chinese).
张慧锋, 孙艳, 李春江, 等. 空间控制技术与应用, 2020, 46(2), 80.
4 Ma X R, Han Z Y, Zou Y J, et al. Journal of Astronautics, 2012, 33(1), 1 (in Chinese).
马兴瑞, 韩增尧, 邹元杰, 等. 宇航学报, 2012, 33(1), 1.
5 Zuo X Z, Jiang F, Zhang Y, et al. Chinese Journal of Applied Chemistry, 2014, 35(6), 1035 (in Chinese).
左晓舟, 姜峰, 张燕, 等. 应用光学, 2014, 35(6), 1035.
6 Zhang W H, Tang C H. Acta Aeronautica et Astronautica Sinica, DOI:10.7527/S1000-6893.2023.29965 (in Chinese).
张卫红, 唐长红. 航空学报, DOI:10.7527/S1000-6893.2023.29965.
7 Lei H S, Zhao Z A, Guo X G, et al. Aerospace Materials & Technology, 2021, 51(4), 10 (in Chinese).
雷红帅, 赵则昂, 郭晓岗, 等. 宇航材料工艺, 2021, 51(4), 10.
8 Zhu Y L. Aerospace China, 1996(7), 13 (in Chinese).
朱毅麟. 中国航天, 1996(7), 13.
9 Liu Q, He X, Zhang F. Infrared and Laser Engineering, 2014, 43(S1), 183 (in Chinese).
刘强, 何欣, 张峰. 红外与激光工程, 2014, 43(S1), 183.
10 Fan Z G, Chang H, Chen S Q, et al. Optics and Precision Engineering, 2011, 19(11), 2573 (in Chinese).
范志刚, 常虹, 陈守谦, 等. 光学精密工程, 2011, 19(11), 2573.
11 Wang S J. Research on bonding process simulation and stress analysis for plane optical components. Master Thesis, University of Electronic Science and Technology, China, 2014 (in Chinese).
王生军. 平面光学元器件粘接工艺与应力分析研究. 硕士学位论文, 电子科技大学, 2014.
12 Zhou X H, Xing H, Yang J K. Spacecraft Recovery & Remote Sensing, 2019, 40(3), 65 (in Chinese).
周小华, 邢辉, 杨居奎. 航天返回与遥感, 2019, 40(3), 65.
13 Yu J C, Yuan J, Cong S S, et al. Acta Optica Sinica, 2019, 39(5), 0523002 (in Chinese).
于霁晨, 袁健, 丛杉珊, 等. 光学学报, 2019, 39(5), 0523002.
14 Wang M Z, Wang Z W, Tan L F, et al. Computer Aided Engineering, 2019, 28(3), 36 (in Chinese).
王明珠, 王忠伟, 谭林峰, 等. 计算机辅助工程, 2019, 28(3), 36.
15 Yu C, Zhang D W, Yang Z X. Aviation Precision Manufacturing Technology, 2023, 34(3), 1003 (in Chinese).
于聪, 张大伟, 杨振兴. 航空精密制造技术, 2023, 34(3), 1003.
16 Huang C Y, Guo G K, Liang Y, et al. Journal of System Simulation, 2014, 26(12), 2985 (in Chinese).
黄春跃, 郭广阔, 梁颖, 等. 系统仿真学报, 2014, 26(12), 2985.
17 Hong Q H, He X F, Zhang M L. Bulletin of the Chinese Ceramic Society, 2024, 43(2), 617 (in Chinese).
洪侨亨, 贺雄飞, 张明朗. 硅酸盐通报, 2024, 43(2), 617.
18 Zhang N, Wang Y, Zhang Z F, et al. Infrared and Laser Engineering, 2022, 51(4), 20210295 (in Chinese).
张楠, 王跃, 张志飞, 等. 红外与激光工程, 2022, 51(4), 20210295.
19 QJ 1992, 20-90 Specification for preparation and bonding process of adhesive XM-31-1 sealant preparation and bonding sealing process aerospace industry standards of the Ministry of Aeronautics and Astronautics of the People’s Republic of China, China Standards Publishing House, China, 1992 (in Chinese).
中华人民共和国航空航天工业部航天工业标准, QJ 1992. 20-90 胶粘剂的配制与胶接工艺规范 XM-31-1密封胶的配制与胶接密封工艺, 中国标准出版社, 1992.
20 Huang Y H. Curing deformation mechanism and lens shape analysis of two adhesive structures. Master Thesis, Jilin University, China, 2023 (in Chinese).
黄翊航. 两种胶接结构固化变形机理与镜片面形分析. 硕士学位论文, 吉林大学, 2023.
No related articles found!
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed