Please wait a minute...
材料导报  2025, Vol. 39 Issue (18): 24080008-6    https://doi.org/10.11896/cldb.24080008
  无机非金属及其复合材料 |
海洋潮汐区混凝土氯离子扩散系数相似性分析
杨玉龙1, 单联飞1, 庄智杰2, 鲍玖文1,*, 崔祎菲1
1 青岛理工大学土木工程学院,山东 青岛 266520
2 江苏苏博特新材料股份有限公司,南京 211103
Similarity Analysis of Chloride Diffusion Coefficient of Concrete Exposed to Marine Tidal Zone
YANG Yulong1, SHAN Lianfei1, ZHUANG Zhijie2, BAO Jiuwen1,*, CUI Yifei1
1 School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, China
2 Sobute New Materials Co., Ltd., Nanjing 211103, China
下载:  全 文 ( PDF ) ( 9195KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氯离子侵蚀是混凝土结构发生耐久性破坏的主要原因之一,因此研究氯离子在混凝土内的传输行为并建立相应的传输理论对海洋混凝土耐久性评估具有重要意义。目前针对混凝土氯盐侵蚀的实海暴露和室内模拟潮汐区作用之间的关系研究不足,氯离子侵蚀的相似机理研究尚不明确。基于此,通过试验研究建立不同海洋区域环境与水灰比下混凝土的氯离子扩散系数时变模型,并进行了氯离子扩散系数相似性分析;结合Fick第二定律理论模型,提出了考虑时变性的氯离子扩散系数相似率分析方法。研究表明:采用幂函数建立时变模型来描述不同情况下氯离子扩散系数随时间变化较符合实际情况;基于实海暴露试验与室内模拟试验分析,混凝土氯离子扩散系数相似率随时间延长逐步趋于稳定;采用室内短期模拟的氯离子扩散系数数据可较好地预测实海长期暴露作用的氯盐侵蚀行为,为海洋潮汐区暴露的混凝土耐久性评估与寿命预测提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨玉龙
单联飞
庄智杰
鲍玖文
崔祎菲
关键词:  海洋潮汐区  氯盐侵蚀  氯离子扩散系数  时变性  相似率    
Abstract: Chloride ingress behavior is one of the main reasons to cause the durability failure of concrete structures. It is of great significance to study chloride transport behavior in concrete and further establish the corresponding transport theory for durability evaluation of marine concrete. At present, there are relatively few studies on the relationship between real sea exposure and indoor simulated tidal areas action for the chloride ingress into concrete, and the similar mechanism of chloride ion erosion is still unclear. Based on this, a time-varying model of chloride diffusion coefficient under different marine environmental zones and water-cement ratios was established according to the conducted experimental investigations. The similarity analysis of chloride diffusion coefficient of concrete with different mix ratios exposed to the real-marine and indoor simulated environments was carried out. Combining with the model of Fick's second law, the similarity analysis method of chloride diffusion coefficient considering the time-varying characteristics was proposed. The research shows that a time-varying model by using the power function can well describe the variation of chloride diffusion coefficient over time, which is more in line with the actual situation. According to the experimental analysis for the real sea exposure and the indoor simulation test, the similarity of apparent chloride diffusion coefficient gradually becomes stable as time goes by. It is effective to predict the chloride ingress behavior under long-term exposure in the real sea by using the short-term indoor simulation data, which provides a theoretical basis for the durability evaluation and life prediction of concrete exposed to the marine tidal zone.
Key words:  marine tidal zone    chloride ingress    chloride diffusion coefficient    time-varying    similarity
出版日期:  2025-09-25      发布日期:  2025-09-11
ZTFLH:  TU528.1  
基金资助: 国家自然科学基金(52378247;U22A20244);山东省高校优秀青年创新团队资助项目(2021KJ019);山东省自然科学基金(ZR2021JQ17);青岛市科技惠民示范专项(24-1-8-cspz-9-nsh)
通讯作者:  *鲍玖文,博士,青岛理工大学土木工程学院教授、博士研究生导师。山东省“泰山学者”青年专家。目前主要从事海工混凝土耐久性及防护、绿色低碳胶凝材料及FRP复合材料性能的基础理论和关键技术等方面的研究工作。baojiuwen@qut.edu.cn   
作者简介:  杨玉龙,青岛理工大学土木工程学院硕士研究生,在鲍玖文教授的指导下进行研究。目前主要研究领域为海工混凝土耐久性研究。
引用本文:    
杨玉龙, 单联飞, 庄智杰, 鲍玖文, 崔祎菲. 海洋潮汐区混凝土氯离子扩散系数相似性分析[J]. 材料导报, 2025, 39(18): 24080008-6.
YANG Yulong, SHAN Lianfei, ZHUANG Zhijie, BAO Jiuwen, CUI Yifei. Similarity Analysis of Chloride Diffusion Coefficient of Concrete Exposed to Marine Tidal Zone. Materials Reports, 2025, 39(18): 24080008-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080008  或          https://www.mater-rep.com/CN/Y2025/V39/I18/24080008
1 Bao J W, Zhuang Z J, Zhang P, et al. Materials Reports, 2021, 35(7), 7087(in Chinese).
鲍玖文, 庄智杰, 张鹏, 等. 材料导报, 2021, 35(7), 7087.
2 Zhang J H, Fang C. Journal of Materials Science and Engineering, 2019, 37(5), 848(in Chinese).
张菊辉, 方成. 材料科学与工程学报, 2019, 37(5), 848.
3 Bao J W, Kong L Y, Zhang X Y, et al. Acta Materiae Compositae Sinica, 2023, 41(4), 2137(in Chinese).
鲍玖文, 孔令艳, 张心钰, 等. 复合材料学报, 2024, 41(4), 2137.
4 Tong L Y, Qing X X, Zhang Z D, et al. Cement and Concrete Research, 2024, 176, 107351.
5 Sun J, Jin Z Q, Chang H L, et al. Journal of Building Engineering, 2024, 84, 108591.
6 Zhang Z, Niu Q, Liu X, et al. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A:Civil Engineering, 2021, 7(4), 04021061.
7 Zhang Z, Ren X, Niu Q, et al. Structures, 2023, 48, 159.
8 Xu Y, Gao Y, Yu H, et al. Journal of Building Engineering, 2023, 76, 107379.
9 Shao W, He X, Shi D. Engineering Failure Analysis, 2022, 136, 106184.
10 Lian S, Meng T, Zhao Y, et al. Structures, 2023, 52, 1020.
11 Dong Q, Zheng H R, Zhang L J, et al. Construction and Building Materials, 2023, 405, 133237.
12 Xiong Q X, Liu Q F, Zhang X J, et al. Journal of Materials in Civil Engineering, 2022, 34(11), 04022309.
13 Chen W K, Liu Q F. Journal of Hydraulic Engineering, 2021, 52(5), 622(in Chinese).
陈伟康, 刘清风. 水利学报, 2021, 52(5), 622.
14 Meng Z Z, Zhang Y, Chen W, et al. Transport in Porous Media, 2024, 151(2), 339.
15 Mangat P S, Molloy B T. Materials and Structures, 1994, 27(6), 338.
16 Tang L P, Gulikers J. Cement and Concrete Research, 2007, 37(4), 589.
17 Huang J. Similarity study of chloride ion erosion simulation test of cement-based materials in tidal range. Master's Thesis, Zhejiang University of Technology, China, 2013 (in Chinese).
黄俊. 潮差区水泥基材料氯离子侵蚀模拟试验的相似性研究. 硕士学位论文, 浙江工业大学, 2013.
18 Zhang J Z, Zhao J, Zhang Y R, et al. Construction and Building Materials, 2018, 167(10), 225.
19 Stanish K, Thomas M. Cement and Concrete Research, 2003, 33(1), 55.
20 Wei J N. Indoor simulation of chloride ion erosion of concrete in splash zone and study of exposure similarity in real sea. Master's Thesis, Qingdao University of Technology, China, 2021 (in Chinese).
魏佳楠. 浪溅区混凝土氯离子侵蚀的室内模拟和实海暴露相似性研究. 硕士学位论文, 青岛理工大学, 2021.
21 Bao J W, Wei J N, Zhang P, et al. Journal of the Chinese Ceramic Society, 2020, 48(5), 689(in Chinese).
鲍玖文, 魏佳楠, 张鹏, 等. 硅酸盐学报, 2020, 48(5), 689.
22 Zhuang Z J. Study on chloride ion erosion mechanism of cement-based materials in real sea exposure and artificial simulated tidal zone. Master's Thesis, Qingdao University of Technology, China, 2021(in Chinese).
庄智杰. 实海暴露和人工模拟潮汐区水泥基材料氯离子侵蚀机理研究. 硕士学位论文, 青岛理工大学, 2021.
23 Hong K, Hooton R D. Cement and Concrete Research, 1999, 29(9), 1379.
24 Ožbolt J, Balabanić G, Periškić G, et al. Construction and Building Materials, 2010, 24(9), 1638.
25 Jin W L, Zhao Y X. Durability of concrete structures, Science Press, China, 2002, pp. 79(in Chinese).
金伟良, 赵羽习. 混凝土结构耐久性, 科学出版社, 2002, pp. 79.
26 Jin L B. Multiple environmental time similarity theory and its application to durability of coastal concrete structures. Ph. D. Thesis, Zhejiang University, China, 2008(in Chinese).
金立兵. 多重环境时间相似理论及其在沿海混凝土结构耐久性中的应用. 博士学位论文, 浙江大学, 2008.
27 Chen W. Time-varying similarity and microscopic mechanism of chloride infiltration in cement-based materials under simulated tidal range. Master's Thesis, Zhejiang University of Technology, China, 2016 (in Chinese).
陈伟. 模拟潮差环境下水泥基材料氯离子渗透时变相似性及微观机理. 硕士学位论文, 浙江工业大学, 2016.
28 Wang L. Study on durability of polypropylene fiber concrete under dry and wet cycle. Master's Thesis, Xi'an University of Architecture and Technology, China, 2011 (in Chinese).
王磊. 聚丙烯纤维混凝土在干湿循环条件下的耐久性研究. 硕士学位论文, 西安建筑科技大学, 2011.
29 Ministry of Transport of the People's Republic of China. Technical specification for test and inspection of concrete for waterborne engineering:JTS/T 236-2019. Standards Press of China, China, 2019(in Chinese).
中华人民共和国交通运输部. 水运工程混凝土试验检测技术规范:JTS/T 236-2019. 中国标准出版社, 2019.
[1] 任凯, 张祖华, 邓毓琳, 胡捷, 史才军. 荷载-氯盐侵蚀耦合作用下矿渣基地质聚合物混凝土梁的受弯性能[J]. 材料导报, 2025, 39(3): 24030079-7.
[2] 莫耀鸿, 刘剑辉, 刘乐平, 陈正, 蒋增贵, 史才军. 水泥-蔗渣灰-矿粉海砂砂浆的抗压强度与抗氯盐渗透性能研究[J]. 材料导报, 2024, 38(14): 23030005-10.
[3] 韩宇栋, 郭奕群, 李嘉豪, 张同生, 韦江雄, 余其俊. 高密实多元复合水泥浆体组成设计与抗侵蚀性能研究[J]. 材料导报, 2023, 37(3): 21080213-7.
[4] 卢喆, 姚文娟, 王社良, 王善伟, 刘博. 复掺天然植物油与青麻纤维对古建筑修复灰浆抗盐冻性能的影响[J]. 材料导报, 2023, 37(12): 22010153-9.
[5] 朱红光, 侯金良, 石晶, 葛洁雅, 吕威, 杨森, 李宗徽, 沈正艳. 碱激发材料修补普通混凝土的黏结面性能研究[J]. 材料导报, 2022, 36(16): 21030218-5.
[6] 张成琳, 刘清风. 钢筋混凝土中氯盐和硫酸盐耦合侵蚀研究进展[J]. 材料导报, 2022, 36(1): 20100075-9.
[7] 鲍玖文, 庄智杰, 张鹏, 魏佳楠, 高嵩, 赵铁军. 基于相似性的海洋潮汐区环境混凝土抗氯盐侵蚀性能研究进展[J]. 材料导报, 2021, 35(7): 7087-7095.
[8] 卢喆, 王社良, 王善伟, 姚文娟, 刘博, 闫强强. 氯盐侵蚀-冻融循环耦合作用下改性糯米灰浆耐久性能增强方法[J]. 材料导报, 2021, 35(3): 3033-3040.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed