Please wait a minute...
材料导报  2025, Vol. 39 Issue (18): 24080025-7    https://doi.org/10.11896/cldb.24080025
  无机非金属及其复合材料 |
粉煤灰和钢渣粉对磷酸钾镁水泥浆体硫酸盐侵蚀行为的影响
侯宇颖1,5, 李涛1,5, 吕寅2, 陈刚3, 胡夏闽1,5, 唐磊1,5, 杨建明1,4,5,*
1 三江学院土木工程学院,南京 210012
2 南通理工学院土木工程学院,江苏 南通 226001
3 中建八局第三建设有限公司,南京 210046
4 盐城工学院土木工程学院,江苏 盐城 224002
5 江苏省低碳材料与绿色结构工程研究中心,南京 210012
The Impact of Fly Ash and Steel Slag Powder on Sulfate Erosion Behavior of Magnesium Potassium Phosphate Cement Paste
HOU Yuying1,5, LI Tao1,5, LYU Yin2, CHEN Gang3, HU Xiamin1,5, TANG Lei1,5, YANG Jianming1,4,5,*
1 School of Civil Engineering, San Jiang University, Nanjing 210012, China
2 School of Civil Engineering, Nantong Institute of Technology, Nantong 226001, Jiangsu, China
3 China Construction Eighth Bureau Third Construction Co.,Ltd., Nanjing 210046, China
4 School of Civil Engineering, Yancheng Institute of Technology, Yancheng 224002, Jiangsu, China
5 Jiangsu Engineering Research Center for Low Carbon Materials and Green Structures, Nanjing 210012, China
下载:  全 文 ( PDF ) ( 15104KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作研究了单掺粉煤灰、钢渣粉改性磷酸钾镁水泥(MKPC)试件长期浸泡在硫酸盐溶液中的侵蚀行为。以硫酸根离子侵蚀深度、硫酸根离子扩散系数以及强度为表征参数,结合微观分析手段得出如下结论:在5%硫酸钠溶液饱和环境下,MKPC浆体试件中硫酸根离子的渗透深度x(mm)与硫酸根离子含量c(x,t)之间的关系满足2或3阶多项式(相关系数均大于0.999)。浸泡360 d后,MKPC试件内部的硫酸根离子浓度均随着侵蚀深度大幅度下降;M0试件的侵蚀深度接近14 mm,M1和M2试件的侵蚀深度接近12 mm;MKPC试件的硫酸根扩散系数均在10-7 mm2/s数量级,较硅酸盐水泥混凝土低1个数量级,其中M1和M2试件的硫酸根扩散系数分别为同条件M0试件的69.7%和87.5%。随着浸泡龄期的延长,MKPC试件的强度呈先增加后下降的趋势。浸泡360 d后,M1和M2的抗折、抗压强度剩余率分别为99.2%、97.8%和97.6%、96.6%,明显高于同条件的M0试件的92.7%、94.7%。试验结果表明粉煤灰和钢渣粉对MKPC试件抗硫酸盐侵蚀均有改善作用。此外,MKPC试件的强度和扩散系数相互对应,变化规律一致。通过微观分析和理论分析,证实在5%硫酸钠溶液长期浸泡环境下,MKPC硬化体中陆续有新的MgKPO4·6H2O(MKP)生成,MKP的溶蚀和相变、未反应MgO的水解和碳化、含硫酸根的盐类结晶等现象,它们对MKPC硬化体的孔结构有正负二种作用,但总体上造成了MKPC硬化体的结构逐步劣化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯宇颖
李涛
吕寅
陈刚
胡夏闽
唐磊
杨建明
关键词:  磷酸钾镁水泥(MKPC)  硫酸盐侵蚀  强度  扩散系数  粉煤灰  钢渣粉    
Abstract: In this work, the corrosion behavior of magnesium potassium phosphate cement (MKPC) specimens modified with fly ash and steel slag powder under long-term immersion in a sulfate solution was investigated. Based on microstructural analysis, using the sulfate ion erosion depth, sulfate ion diffusion coefficient, and strength as characterization parameters, the following conclusions were drawn. Immersed in a saturated 5% sodium sulfate solution, the relationship between the penetration depth of sulfate ions x(mm) and the sulfate ion concentration c(x,t) in MKPC paste specimens follows a second- or third-order polynomial (with a correlation coefficient greater than 0.999). After 360 days of immersion, the sulfate ion concentration inside the MKPC specimens significantly decreased with increasing erosion depth. The erosion depth of the M0 specimen was close to 14 mm, while the erosion depths of the M1 and M2 specimens were approximately 12 mm. The sulfate diffusion coefficient of MKPC specimens was approximately 10-7 mm2/s, which was an order of magnitude lower than that of Portland cement concrete. Under the same conditions, the sulfate diffusion coefficients of the M1 and M2 specimens were 69.7% and 87.5% of that of the M0 specimen, respectively. With the extension of the immersion age, the strength of the MKPC specimens initially increased and then decreased. After 360 days of immersion, the residual flexural and compressive strength of the M1 and M2 specimens were 99.2%, 97.8%, and 97.6%, 96.6%, respectively, which were significantly higher than those of the M0 specimens under the same conditions (92.7%, 94.7%). The experimental results indicate that both fly ash and steel slag powder improve the sulfate resistance of MKPC specimens. Furthermore, the strength and diffusion coefficient of the MKPC specimens followed consistent trends. Microstructural and theoretical analysis confirmed that, under long-term immersion in a 5% sodium sulfate solution, new MgKPO4·6H2O (MKP) crystals continuously formed in the hardened MKPC matrix. The dissolution and phase transformation of MKP, the hydrolysis and carbonation of unreacted MgO, and the crystallization of sulfate-containing salts each had both positive and negative effects on the pore structure of the MKPC matrix, ultimately leading to a gradual deterioration of the MKPC structure.
Key words:  magnesium potassium phosphate cement (MKPC)    sulfate erosion    strength    diffusion coefficient    fly ash    steel slag powder
出版日期:  2025-09-25      发布日期:  2025-09-11
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52378265);江苏省高等学校自然科学研究项目(22KJD560005);江苏高校“青蓝工程”资助项目(苏教师函 [2023]27号)
通讯作者:  *杨建明,博士,三江学院土木工程学院、盐城工学院土木工程学院教授、硕士研究生导师。目前主要从事钢结构防腐、无机非金属材料等方面的研究工作。yjm_kk@163.com   
作者简介:  侯宇颖,三江学院土木工程学院副教授。目前主要从事土木工程材料、组合结构等方面的研究工作。
引用本文:    
侯宇颖, 李涛, 吕寅, 陈刚, 胡夏闽, 唐磊, 杨建明. 粉煤灰和钢渣粉对磷酸钾镁水泥浆体硫酸盐侵蚀行为的影响[J]. 材料导报, 2025, 39(18): 24080025-7.
HOU Yuying, LI Tao, LYU Yin, CHEN Gang, HU Xiamin, TANG Lei, YANG Jianming. The Impact of Fly Ash and Steel Slag Powder on Sulfate Erosion Behavior of Magnesium Potassium Phosphate Cement Paste. Materials Reports, 2025, 39(18): 24080025-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080025  或          https://www.mater-rep.com/CN/Y2025/V39/I18/24080025
1 Jiang J Y, Zheng H R, Sun G W, et al. Journal of Building Materials, 2023, 26(10), 1047(in Chinese).
蒋金洋, 郑皓睿, 孙国文, 等. 建筑材料学报, 2023, 26(10), 1047.
2 Zhang S H, Wang Y, Guo B B, et al. Journal of the Chinese Ceramic Society, 2024, 52(2), 474(in Chinese).
张少辉, 王艳, 郭冰冰, 等. 硅酸盐学报, 2024, 52(2), 474.
3 Wagh A S. Chemically bonded phosphate ceramics:twenty-first century materials with diverse applications. Elsevier, England, 2016.
4 Haque M A, Chen B. Construction and Building Materials, 2019, 211, 885.
5 Fang B, Hu Z, Shi T, et al. Ceramics International, 2023, 49(3), 4001.
6 Meng X, Jiang Y, Chen B, et al. Construction and Building Materials, 2023, 408, 133612.
7 Xu C, Han J, Yang Y. Journal of Building Engineering, 2024, 82, 108284.
8 Qin J, Qian J, You C, et al. Construction and Building Materials, 2018, 167, 166.
9 Hu F, Neaz S M, Hadi M N S, et al. Construction and Building Materials, 2018, 185, 648.
10 Dong Y H, Zhou J, Yang H Y, et al. Corrosion Science and Protection Technology, 2017, 29(5), 515 (in Chinese).
董英豪, 周杰, 杨海艳, 等. 腐蚀科学与防护技术, 2017, 29(5), 515.
11 Ding Z, Li Y Y, Xu M R, et al. Construction and Building Materials, 2020, 251, 118874.
12 Chen Q, Tang H, Li Z, et al. Journal of Materials Science and Engineering, 2019, 37(1), 91(in Chinese).
陈晴, 唐浩, 李振, 等. 材料科学与工程学报, 2019, 37(1), 91.
13 Zheng D D, Ji T, Wang C Q, et al. Construction and Building Materials, 2016, 106, 415.
14 Xu B, Ma H, Shao H, et al. Cement and Concrete Research, 2017, 99, 86.
15 Yang J, Wang L, Jin C, et al. Construction and Building Materials, 2020, 237, 117639.
16Yang J, Lu J, Wu Q, et al. Construction and Building Materials, 2018, 159, 137.
17 Jing Y, Jiang Y, Chen B, et al. Journal of Building Engineering, 2023, 77, 107454.
18 Yang Y, Liu J, Wang B, et al. Construction and Building Materials, 2020, 244, 118349.
19 Li Y, Shi T, Li J. Construction and Building Materials, 2016, 105, 384.
20 Chong L, Yang J, Xu Z Z, et al. Construction and Building Materials, 2019, 212, 663.
21 Shi J, Zhao J, Chen H, et al. Cement and Concrete Research, 2022, 157, 106830.
22 Zou D, Qin S, Liu T, et al. Cement and Concrete Research, 2021, 139(1), 106284.
23 Leng F G, Ma X X, Tian G F. Journal of Southeast University ( Natural Science Edition ), 2006, 36(S2), 45(in Chinese).
冷发光, 马孝轩, 田冠飞. 东南大学学报(自然科学版 ), 2006, 36(S2), 45.
24 Hou Y, Li L, Li T, et al. Materials, 2023, 16(6), 2183.
[1] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[2] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[3] 王艳, 常天风, 杨子凡, 李伊岚. 超高性能混凝土-普通混凝土界面粘结性能研究[J]. 材料导报, 2025, 39(7): 24020129-6.
[4] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[5] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[6] 梁志超, 任文渊, 李双村, 张爱军, 王毓国. 冻融和易溶盐对石灰固化伊犁黄土强度及水稳性的影响[J]. 材料导报, 2025, 39(6): 23120250-8.
[7] 钟新宇, 赖俊英, 阮少钦, 钱晓倩, 钱匡亮. 复合早强剂对掺石灰石粉砂浆强度和水化作用的影响[J]. 材料导报, 2025, 39(5): 24010244-8.
[8] 李自强, 崔素萍, 马忠诚, 王亚丽, 王晶, 刘云, 乔志杨. 机器学习算法用于水泥强度预测的研究进展[J]. 材料导报, 2025, 39(5): 23120133-12.
[9] 周志刚, 何斯华, 黎凯, 黄红明, 章泽鹏. 酸雨-干湿循环-荷载综合作用下水泥稳定碎石强度特性分析[J]. 材料导报, 2025, 39(3): 23070146-9.
[10] 张凌凯, 丁旭升, 樊培培. 新疆北部重塑性黄土的力学特性规律及微观机制试验研究[J]. 材料导报, 2025, 39(3): 23090060-10.
[11] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[12] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[13] 文波, 田伟, 张路, 牛荻涛, 嵇智远. 玄武岩-聚丙烯纤维增强混凝土在杂散电流与硫酸盐作用下的劣化规律[J]. 材料导报, 2025, 39(18): 24040090-7.
[14] 林俊涛, 钟超, 王宗瑞, 徐方, 朱晓斌. 地聚物乳化沥青冷再生混合料的强度发展特征与性能研究[J]. 材料导报, 2025, 39(18): 24050037-6.
[15] 杨玉龙, 单联飞, 庄智杰, 鲍玖文, 崔祎菲. 海洋潮汐区混凝土氯离子扩散系数相似性分析[J]. 材料导报, 2025, 39(18): 24080008-6.
[1] Guang MA,Xin CHEN,Licheng LU,Dongqun XIN,Li MENG,Hao WANG,Ling CHENG,Fuyao YANG. Monte Carlo Simulation of the Evolution of Goss Texture in Secondary Recrystallization of Thin Gauge Grain Oriented Silicon Steel[J]. Materials Reports, 2018, 32(2): 313 -315 .
[2] CHEN Jian, XU Hui. Research Progress of Graphene and Its Nanocomposites as Anodes for Lithium Ion Batteries[J]. Materials Reports, 2017, 31(9): 36 -44 .
[3] WANG Tiantian, XU Mengjia, XU Jijin, YU Chun, LU Hao. Influence of Second Welding Thermal Cycle on Reheat Cracking Sensitivity of CGHAZ in T23 Steel[J]. Materials Reports, 2017, 31(12): 56 -59 .
[4] XIE Jiale, YANG Pingping, LI Chang Ming. Stable and High-efficient α-Fe2O3 Based Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics[J]. Materials Reports, 2018, 32(7): 1037 -1056 .
[5] YANG Shicong, YAO Guowen, ZHANG Jinquan, SHI Kang. The Corrosion Fatigue Characteristic of Steel Strand Experiencing an Artificial Accelerated Salt Fog Ageing[J]. Materials Reports, 2018, 32(12): 1988 -1993 .
[6] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[7] LI Xiuli, TIE Shengnian. Effect of Quick-dissolving and High-viscosity Carboxymethyl Cellulose Sodium on Properties of Glauber’s Salt-based Composites Phase Change Energy Storage Materials with Different Phase Transition Temperature Gradient[J]. Materials Reports, 2018, 32(22): 3848 -3852 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] REN Xiuxiu, ZHU Yiju, ZHAO Shengxiang, HAN Zhongxi, YAO Lina. The Relationship Between Micromechanical Property and Friction Property of Four Kinds of Energetic Crystals[J]. Materials Reports, 2019, 33(z1): 448 -452 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed