Research Progress in Luminescent Gold (Ⅲ) Complexes
YI Yuanhai1, MAO Mao2, PENG Jiahuan3,*, LI Huiyang1,*
1 College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China 2 The University of Hong Kong Shenzhen Institute of Research and Innovation, Shenzhen 518052, Guangdong, China 3 School of Materials and Food Science, Jiangmen Polytechnic, Jiangmen 529000, Guangdong, China
Abstract: Organometallic complexes have emerged as indispensable core elements for enhancing the performance of OLED devices, due to their ability to utilize singlet and triplet excitons. They have garnered significant attention from both the academic and industrial communities. Currently, phosphorescent complexes based on iridium(Ⅲ) and platinum(Ⅱ) have found widespread application in OLEDs, but the scarcity of these metals limits the sustainable development of the organic display industry. In this context, gold(Ⅲ) complexes, with high spin-orbit coupling constants and flexible ligand design, which can exhibit both phosphorescence and thermally activated delayed fluorescence (TADF) emission, present vast application prospects in the field of high-efficiency OLEDs. Through optimization of molecular structure and device fabrication, gold(Ⅲ) complexes have demonstrated outstanding luminescence performance and device stability. This review summarizes the research progress on gold(Ⅲ) complexes as OLED emitters, analyzing the intrinsic relationship between molecular structure and luminescence properties from both the phosphorescence and TADF perspectives. It also provides an outlook on the future development directions, aiming to serve as a valuable reference for researchers in this field.
1 Song J, Lee H, Jeong E G, et al. Advanced Materials, 2020, 32(35), 1907539. 2 Baldo M A, O'Brien D F, You Y J, et al. Nature, 1998, 395, 151. 3 Ma Y, Zhang H, Shen J, et al. Synthetic Metals, 1998, 94(3), 245. 4 Wu C, Shi K, Li S, et al. EnergyChem, 2024, 6(2), 100120. 5 Hruzd M, Durand R, Gauthier S, et al. The Chemical Record, 2024, 24(6), e202300335. 6 Uoyama H, Goushi K, Shizu K, et al. Nature, 2012, 492(7428), 234 7 Tang M C, Chan M Y, Yam V W W. Chemical Reviews, 2021, 121(13), 7249. 8 Lo L H Y, Tang M C, Lai S L, et al. ACS Applied Materials & Interfaces, 2021, 13(48), 57673. 9 Yam V W W, Choi S W K, Lai T F, et al. Journal of the Chemical Society, Dalton Transactions, 1993(6), 1001. 10 Au V K, Wong K M, Zhu N, et al. Chemistry—A European Journal, 2011, 17(1), 130. 11 Wong B Y W, Wong H L, Wong Y C, et al. Chemical Science, 2017, 8(10), 6936. 12 Gryca I, Czerwińska K, Maroń A, et al. Journal of Luminescence, 2018, 198, 251. 13 Szentkuti A, Bachmann M, Garg J A, et al. Chemistry-A European Journal, 2014, 20(9), 2585. 14 Bachmann M, Terreni J, Blacque O, et al. Chemistry-A European Journal, 2017, 23(16), 3837. 15 Bachmann M, Blacque O, Venkatesan K. Chemistry-A European Journal, 2017, 23(40), 9451. 16 Von Arx T, Szentkuti A, Zehnder T N, et al. Journal of Materials Che-mistry C, 2017, 5(15), 3765. 17 Chan K T, Tong G S M, Wan Q, et al. Chemistry—An Asian Journal, 2017, 12(16), 2104. 18 Malmberg R, Bachmann M, Blacque O, et al. Chemistry—A European Journal, 2019, 25(14), 3627. 19 Fan X, Hao X, Huang F, et al. Advanced Science, 2023, 10, 2303504. 20 To W P, Tong G S M, Cheung C W, et al. Inorganic Chemistry, 2017, 56(9), 5046. 21 Parker R R, Stracey R F, McEllin A J, et al. ACS Omega, 2022, 7(28), 24903. 22 Roşca D A, Smith D A, Bochmann M. Chemical Communications, 2012, 48(58), 7247. 23 Kumar R, Linden A, Nevado C. Angewandte Chemie International Edition, 2015, 54(48), 14287. 24 Tang M C, Lee C, Ng M, et al. Angewandte Chemie International Edition, 2018, 57(19), 5463. 25 Li L K, Au-Yeung C C, Tang M C, et al. Materials Horizons, 2022, 9(1), 281. 26 Lee C H, Tang M C, Cheung W L, et al. Chemical Science, 2018, 9(29), 6228. 27 Tang M C, Tsang D P, Chan M M, et al. Angewandte Chemie International Edition, 2013, 52(1), 446. 28 Tang M C, Chan C K, Tsang D P, et al. Chemistry—A European Journal, 2014, 20(46), 15233. 29 Tang M C, Tsang D P K, Wong Y C, et al. Journal of the American Chemical Society, 2014, 136(51), 17861. 30 Tang M C, Tsang D P K, Chan M Y, et al. Materials Chemistry Frontiers, 2017, 1(12), 2559. 31 Tang M C, Lee C H, Lai S L, et al. Journal of the American Chemical Society, 2017, 139(27), 9341. 32 Tang M C, Kwok W K, Lai S L, et al. Chemical Science, 2019, 10(2), 594. 33 Tang M C, Leung M Y, Lai S L, et al. Journal of the American Chemical Society, 2018, 140(40), 13115. 34 Leung M Y, Tang M C, Cheung W L, et al. Journal of the American Chemical Society, 2020, 142(5), 2448. 35 Li L K, Tang M C, Cheung W L, et al. Chemistry of Materials, 2019, 31(17), 6706. 36 Beucher H, Kumar S, Merino E, et al. Chemistry of Materials, 2020, 32(4), 1605. 37 Beucher H, Kumar S, Kumar R, et al. Chemistry—A European Journal, 2020, 26(72), 17604. 38 Li L K, Tang M C, Lai S L, et al. Nature Photonics, 2019, 13(3), 185. 39 Kwok W, Tang M, Lai S, et al. Angewandte Chemie International Edition, 2020, 59(24), 9684. 40 Kuo H, Kumar S, Omongos R L, et al. Advanced Optical Materials, 2023, 11(12), 2202519. 41 Wong B Y, Wong H, Wong Y, et al. Angewandte Chemie International Edition, 2017, 56(1), 302. 42 Lee C H, Tang M C, Kong F K W, et al. Journal of the American Chemical Society, 2020, 142(1), 520. 43 Tang M, Li L, Lai S, et al. Angewandte Chemie International Edition, 2020, 59(47), 21023. 44 Li X, Xie Y, Li Z. Chemistry—An Asian Journal, 2021, 16(19), 2817. 45 Fernandez-Cestau J, Bertrand B, Blaya M, et al. Chemical Communications, 2015, 51(93), 16629. 46 To W, Zhou D, Tong G S M, et al. Angewandte Chemie International Edition, 2017, 56(45), 14036. 47 Zhou D, Cheng G, Tong G S M, et al. Chemistry—A European Journal, 2020, 26(67), 15718. 48 Zhou D, Wu S, Cheng G, et al. Journal of Materials Chemistry C, 2022, 10(12), 4590. 49 Zhou D, To W, Kwak Y, et al. Advanced Science, 2019, 6(18), 1802297. 50 Zhou D, Cheng G, Liu W, et al. Journal of Materials Chemistry C, 2023, 11(12), 3936. 51 Au-Yeung C C, Li L K, Tang M C, et al. Chemical Science, 2021, 12(27), 9516. 52 Zhou D, To W, Tong G S M, et al. Angewandte Chemie International Edition, 2020, 59(16), 6375. 53 Zhou D, Tong G S M, Cheng G, et al. Advanced Materials, 2022, 34(51), 2206598. 54 Li G, Fleetham T, Turner E, et al. Advanced Optical Materials, 2015, 3(3), 390. 55 Li G, Ameri L, Fleetham T, et al. Applied Physics Letters, 2020, 117(25), 253301. 56 Shi M, He Y, Sun Y, et al. Organic Electronics, 2020, 84, 105793. 57 Zhang D, Wei P, Zhang D, et al. ACS Applied Materials & Interfaces, 2017, 9(22), 19040. 58 Au-Yeung C C, Leung M Y, Lai S L, et al. Materials Horizons, 2024, 11(1), 151. 59 Zhan L, Chen T, Zhong C, et al. Science China Chemistry, 2023, 66(11), 3213.