Please wait a minute...
材料导报  2025, Vol. 39 Issue (18): 24080056-13    https://doi.org/10.11896/cldb.24080056
  金属与金属基复合材料 |
金(Ⅲ)配合物发光材料的研究进展
易源海1, 毛茂2, 彭嘉欢3,*, 李慧杨1,*
1 仲恺农业工程学院化学化工学院,广州 510225
2 香港大学深圳研究院,广东 深圳 518052
3 江门职业技术学院材料与食品学院,广东 江门 529000
Research Progress in Luminescent Gold (Ⅲ) Complexes
YI Yuanhai1, MAO Mao2, PENG Jiahuan3,*, LI Huiyang1,*
1 College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
2 The University of Hong Kong Shenzhen Institute of Research and Innovation, Shenzhen 518052, Guangdong, China
3 School of Materials and Food Science, Jiangmen Polytechnic, Jiangmen 529000, Guangdong, China
下载:  全 文 ( PDF ) ( 5068KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属配合物发光材料凭借其高效的单重态与三重态激子利用能力,已成为有机发光二极管(OLED)器件性能提升不可或缺的核心元素,备受学术界与产业界的青睐。目前,基于铱(Ⅲ)和铂(Ⅱ)的磷光配合物在OLED中已得到广泛应用,但这两类金属的稀缺性在一定程度上限制了有机显示产业的可持续发展。在此背景下,具有显著自旋-轨道耦合效应的金(Ⅲ)配合物发光材料,通过灵活的配体设计策略,能够展现出磷光或热活化延迟荧光(TADF)的发光特性,为高效OLED的发展开辟了新途径。通过优化分子结构和器件制备工艺,金(Ⅲ)配合物发光材料已展现出优异的发光性能和良好的器件稳定性。本文综述了金(Ⅲ)配合物发光材料的研究进展,围绕磷光与TADF两种发光机制,深入剖析了金(Ⅲ)配合物的分子结构与发光性能的内在联系,并展望了其未来发展方向,可为相关领域的研究人员提供有价值的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
易源海
毛茂
彭嘉欢
李慧杨
关键词:  金(Ⅲ)配合物  磷光  热活化延迟荧光  有机发光二极管  发光材料    
Abstract: Organometallic complexes have emerged as indispensable core elements for enhancing the performance of OLED devices, due to their ability to utilize singlet and triplet excitons. They have garnered significant attention from both the academic and industrial communities. Currently, phosphorescent complexes based on iridium(Ⅲ) and platinum(Ⅱ) have found widespread application in OLEDs, but the scarcity of these metals limits the sustainable development of the organic display industry. In this context, gold(Ⅲ) complexes, with high spin-orbit coupling constants and flexible ligand design, which can exhibit both phosphorescence and thermally activated delayed fluorescence (TADF) emission, present vast application prospects in the field of high-efficiency OLEDs. Through optimization of molecular structure and device fabrication, gold(Ⅲ) complexes have demonstrated outstanding luminescence performance and device stability. This review summarizes the research progress on gold(Ⅲ) complexes as OLED emitters, analyzing the intrinsic relationship between molecular structure and luminescence properties from both the phosphorescence and TADF perspectives. It also provides an outlook on the future development directions, aiming to serve as a valuable reference for researchers in this field.
Key words:  gold(Ⅲ) complex    phosphorescence    TADF    organic light-emitting diodes    luminescent material
出版日期:  2025-09-25      发布日期:  2025-09-11
ZTFLH:  TQ9  
基金资助: 国家自然科学基金(22205265);广州市基础与应用基础研究项目(2023A04J1553);广东省普通高校特色创新类项目(2022KTSCX342;2023KTSCX369)
通讯作者:  *彭嘉欢,博士,江门职业技术学院讲师。目前主要从事有机光电材料等方面的研究。jiahuanpeng@126.com;
李慧杨,博士,仲恺农业工程学院特聘副教授、硕士研究生导师。目前主要从事有机及金属配合物发光材料方面的研究。lihuiyang@whu.edu.cn   
作者简介:  易源海,仲恺农业工程学院硕士研究生,在李慧杨博士的指导下进行研究。目前主要研究领域为金属配合物的发光材料。
引用本文:    
易源海, 毛茂, 彭嘉欢, 李慧杨. 金(Ⅲ)配合物发光材料的研究进展[J]. 材料导报, 2025, 39(18): 24080056-13.
YI Yuanhai, MAO Mao, PENG Jiahuan, LI Huiyang. Research Progress in Luminescent Gold (Ⅲ) Complexes. Materials Reports, 2025, 39(18): 24080056-13.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080056  或          https://www.mater-rep.com/CN/Y2025/V39/I18/24080056
1 Song J, Lee H, Jeong E G, et al. Advanced Materials, 2020, 32(35), 1907539.
2 Baldo M A, O'Brien D F, You Y J, et al. Nature, 1998, 395, 151.
3 Ma Y, Zhang H, Shen J, et al. Synthetic Metals, 1998, 94(3), 245.
4 Wu C, Shi K, Li S, et al. EnergyChem, 2024, 6(2), 100120.
5 Hruzd M, Durand R, Gauthier S, et al. The Chemical Record, 2024, 24(6), e202300335.
6 Uoyama H, Goushi K, Shizu K, et al. Nature, 2012, 492(7428), 234
7 Tang M C, Chan M Y, Yam V W W. Chemical Reviews, 2021, 121(13), 7249.
8 Lo L H Y, Tang M C, Lai S L, et al. ACS Applied Materials & Interfaces, 2021, 13(48), 57673.
9 Yam V W W, Choi S W K, Lai T F, et al. Journal of the Chemical Society, Dalton Transactions, 1993(6), 1001.
10 Au V K, Wong K M, Zhu N, et al. Chemistry—A European Journal, 2011, 17(1), 130.
11 Wong B Y W, Wong H L, Wong Y C, et al. Chemical Science, 2017, 8(10), 6936.
12 Gryca I, Czerwińska K, Maroń A, et al. Journal of Luminescence, 2018, 198, 251.
13 Szentkuti A, Bachmann M, Garg J A, et al. Chemistry-A European Journal, 2014, 20(9), 2585.
14 Bachmann M, Terreni J, Blacque O, et al. Chemistry-A European Journal, 2017, 23(16), 3837.
15 Bachmann M, Blacque O, Venkatesan K. Chemistry-A European Journal, 2017, 23(40), 9451.
16 Von Arx T, Szentkuti A, Zehnder T N, et al. Journal of Materials Che-mistry C, 2017, 5(15), 3765.
17 Chan K T, Tong G S M, Wan Q, et al. Chemistry—An Asian Journal, 2017, 12(16), 2104.
18 Malmberg R, Bachmann M, Blacque O, et al. Chemistry—A European Journal, 2019, 25(14), 3627.
19 Fan X, Hao X, Huang F, et al. Advanced Science, 2023, 10, 2303504.
20 To W P, Tong G S M, Cheung C W, et al. Inorganic Chemistry, 2017, 56(9), 5046.
21 Parker R R, Stracey R F, McEllin A J, et al. ACS Omega, 2022, 7(28), 24903.
22 Roşca D A, Smith D A, Bochmann M. Chemical Communications, 2012, 48(58), 7247.
23 Kumar R, Linden A, Nevado C. Angewandte Chemie International Edition, 2015, 54(48), 14287.
24 Tang M C, Lee C, Ng M, et al. Angewandte Chemie International Edition, 2018, 57(19), 5463.
25 Li L K, Au-Yeung C C, Tang M C, et al. Materials Horizons, 2022, 9(1), 281.
26 Lee C H, Tang M C, Cheung W L, et al. Chemical Science, 2018, 9(29), 6228.
27 Tang M C, Tsang D P, Chan M M, et al. Angewandte Chemie International Edition, 2013, 52(1), 446.
28 Tang M C, Chan C K, Tsang D P, et al. Chemistry—A European Journal, 2014, 20(46), 15233.
29 Tang M C, Tsang D P K, Wong Y C, et al. Journal of the American Chemical Society, 2014, 136(51), 17861.
30 Tang M C, Tsang D P K, Chan M Y, et al. Materials Chemistry Frontiers, 2017, 1(12), 2559.
31 Tang M C, Lee C H, Lai S L, et al. Journal of the American Chemical Society, 2017, 139(27), 9341.
32 Tang M C, Kwok W K, Lai S L, et al. Chemical Science, 2019, 10(2), 594.
33 Tang M C, Leung M Y, Lai S L, et al. Journal of the American Chemical Society, 2018, 140(40), 13115.
34 Leung M Y, Tang M C, Cheung W L, et al. Journal of the American Chemical Society, 2020, 142(5), 2448.
35 Li L K, Tang M C, Cheung W L, et al. Chemistry of Materials, 2019, 31(17), 6706.
36 Beucher H, Kumar S, Merino E, et al. Chemistry of Materials, 2020, 32(4), 1605.
37 Beucher H, Kumar S, Kumar R, et al. Chemistry—A European Journal, 2020, 26(72), 17604.
38 Li L K, Tang M C, Lai S L, et al. Nature Photonics, 2019, 13(3), 185.
39 Kwok W, Tang M, Lai S, et al. Angewandte Chemie International Edition, 2020, 59(24), 9684.
40 Kuo H, Kumar S, Omongos R L, et al. Advanced Optical Materials, 2023, 11(12), 2202519.
41 Wong B Y, Wong H, Wong Y, et al. Angewandte Chemie International Edition, 2017, 56(1), 302.
42 Lee C H, Tang M C, Kong F K W, et al. Journal of the American Chemical Society, 2020, 142(1), 520.
43 Tang M, Li L, Lai S, et al. Angewandte Chemie International Edition, 2020, 59(47), 21023.
44 Li X, Xie Y, Li Z. Chemistry—An Asian Journal, 2021, 16(19), 2817.
45 Fernandez-Cestau J, Bertrand B, Blaya M, et al. Chemical Communications, 2015, 51(93), 16629.
46 To W, Zhou D, Tong G S M, et al. Angewandte Chemie International Edition, 2017, 56(45), 14036.
47 Zhou D, Cheng G, Tong G S M, et al. Chemistry—A European Journal, 2020, 26(67), 15718.
48 Zhou D, Wu S, Cheng G, et al. Journal of Materials Chemistry C, 2022, 10(12), 4590.
49 Zhou D, To W, Kwak Y, et al. Advanced Science, 2019, 6(18), 1802297.
50 Zhou D, Cheng G, Liu W, et al. Journal of Materials Chemistry C, 2023, 11(12), 3936.
51 Au-Yeung C C, Li L K, Tang M C, et al. Chemical Science, 2021, 12(27), 9516.
52 Zhou D, To W, Tong G S M, et al. Angewandte Chemie International Edition, 2020, 59(16), 6375.
53 Zhou D, Tong G S M, Cheng G, et al. Advanced Materials, 2022, 34(51), 2206598.
54 Li G, Fleetham T, Turner E, et al. Advanced Optical Materials, 2015, 3(3), 390.
55 Li G, Ameri L, Fleetham T, et al. Applied Physics Letters, 2020, 117(25), 253301.
56 Shi M, He Y, Sun Y, et al. Organic Electronics, 2020, 84, 105793.
57 Zhang D, Wei P, Zhang D, et al. ACS Applied Materials & Interfaces, 2017, 9(22), 19040.
58 Au-Yeung C C, Leung M Y, Lai S L, et al. Materials Horizons, 2024, 11(1), 151.
59 Zhan L, Chen T, Zhong C, et al. Science China Chemistry, 2023, 66(11), 3213.
[1] 王逸飞, 张月, 赵鹏程, 由岫. 染料负载型MOFs复合材料用作发光中心材料的研究进展[J]. 材料导报, 2025, 39(12): 24060108-12.
[2] 甘晓明, 苏玉仙, 应文伟, 王建峰, 刘力, 周晓峰, 温世鹏. 稀土上转换发光材料的设计及在光动力治疗中的应用研究进展[J]. 材料导报, 2024, 38(8): 22080243-12.
[3] 蔡心杰, 徐亦冬, 王玉全, 武金婷. 采用持久发光材料为内部光源的光催化复合材料研究进展[J]. 材料导报, 2024, 38(15): 23030157-10.
[4] 黄兵, 刘萍. 金属网格柔性透明导电薄膜研究进展[J]. 材料导报, 2023, 37(5): 21030214-12.
[5] 王达浩, 谢凤鸣, 魏怀鑫, 胡英元, 赵鑫. 双苯磺酰基苯类延迟荧光材料的合成及电致发光性质[J]. 材料导报, 2023, 37(4): 21060007-5.
[6] 卓明鹏, 俞燕君, 丁灵奕, 陈伟凡, 廖良生. 稀土发光配合物及其在有机发光二极管中的应用[J]. 材料导报, 2023, 37(3): 21060045-10.
[7] 张婷婷, 高慧, 杨溢青, 洪兴枝, 任颖, 武海顺. 基于咔唑类给体分子的给-受体型热活化延迟荧光材料研究进展[J]. 材料导报, 2023, 37(16): 22060089-12.
[8] 姚静锋, 李昊泽, 吴平, 谢凤鸣, 胡英元, 赵鑫. 具有分子间电荷转移效应的D-σ-A型热激活延迟荧光材料及其电致发光性能[J]. 材料导报, 2023, 37(14): 22010216-8.
[9] 丁梅鹃, 史慧芳, 安众福. 有机室温磷光材料在生物医学中的应用[J]. 材料导报, 2022, 36(3): 22010004-11.
[10] 唐洋洋, 李林波, 王超, 杨柳, 杨潘. 稀土配合物-无机杂化发光材料研究进展[J]. 材料导报, 2022, 36(19): 21050037-9.
[11] 余俊乐, 郑燕琼, 唐杰, 杨芳, 王超, 魏斌, 李喜峰, 石继锋. 大π共轭分子四苯基二苯并荧蒽及二茚并苝的有机光电器件研究进展[J]. 材料导报, 2020, 34(5): 5148-5157.
[12] 周扬州, 钱磊, 章婷. 银纳米线及其透明导电膜的研究进展[J]. 材料导报, 2020, 34(21): 21081-21092.
[13] 赵思宇, 张祥, 卢伶, 张义, 赵青华. 具有聚集诱导发光性质的热活化延迟荧光材料综述[J]. 材料导报, 2020, 34(17): 17155-17167.
[14] 孙佳南,许辉. 热激发延迟荧光分子的受体基团研究进展[J]. 材料导报, 2020, 34(1): 1135-1145.
[15] 康宁, 陈灼, 徐双林, 单优, 赵长春. Eu3+,Ce4+掺杂NaAlSiO4的制备及发光性能[J]. 材料导报, 2019, 33(Z2): 10-12.
[1] Guang MA,Xin CHEN,Licheng LU,Dongqun XIN,Li MENG,Hao WANG,Ling CHENG,Fuyao YANG. Monte Carlo Simulation of the Evolution of Goss Texture in Secondary Recrystallization of Thin Gauge Grain Oriented Silicon Steel[J]. Materials Reports, 2018, 32(2): 313 -315 .
[2] CHEN Jian, XU Hui. Research Progress of Graphene and Its Nanocomposites as Anodes for Lithium Ion Batteries[J]. Materials Reports, 2017, 31(9): 36 -44 .
[3] WANG Tiantian, XU Mengjia, XU Jijin, YU Chun, LU Hao. Influence of Second Welding Thermal Cycle on Reheat Cracking Sensitivity of CGHAZ in T23 Steel[J]. Materials Reports, 2017, 31(12): 56 -59 .
[4] XIE Jiale, YANG Pingping, LI Chang Ming. Stable and High-efficient α-Fe2O3 Based Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics[J]. Materials Reports, 2018, 32(7): 1037 -1056 .
[5] YANG Shicong, YAO Guowen, ZHANG Jinquan, SHI Kang. The Corrosion Fatigue Characteristic of Steel Strand Experiencing an Artificial Accelerated Salt Fog Ageing[J]. Materials Reports, 2018, 32(12): 1988 -1993 .
[6] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[7] LI Xiuli, TIE Shengnian. Effect of Quick-dissolving and High-viscosity Carboxymethyl Cellulose Sodium on Properties of Glauber’s Salt-based Composites Phase Change Energy Storage Materials with Different Phase Transition Temperature Gradient[J]. Materials Reports, 2018, 32(22): 3848 -3852 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] REN Xiuxiu, ZHU Yiju, ZHAO Shengxiang, HAN Zhongxi, YAO Lina. The Relationship Between Micromechanical Property and Friction Property of Four Kinds of Energetic Crystals[J]. Materials Reports, 2019, 33(z1): 448 -452 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed