Please wait a minute...
材料导报  2025, Vol. 39 Issue (18): 24050037-6    https://doi.org/10.11896/cldb.24050037
  无机非金属及其复合材料 |
地聚物乳化沥青冷再生混合料的强度发展特征与性能研究
林俊涛1,2,*, 钟超2, 王宗瑞2, 徐方2, 朱晓斌3
1 浙江省道桥检测与养护技术研究重点实验室,杭州 311305
2 中国地质大学(武汉)工程学院,武汉 430074
3 江苏省建筑科学研究院有限公司高性能土木工程材料国家重点实验室,南京 210008
Research on the Strength Development Characteristics and Performance of Cold Recycled Mixtures with Geopolymer and Asphalt Emulsion
LIN Juntao1,2,*, ZHONG Chao2, WANG Zongrui2, XU Fang2, ZHU Xiaobin3
1 Zhejiang Provincial Key Lab for Detection and Maintenance Technology of Road and Bridge, Hangzhou 311305, China
2 Faculty of Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China
3 State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Research Institute of Building Science Co., Ltd., Nanjing 210008, China
下载:  全 文 ( PDF ) ( 22549KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 地聚物具有较高的力学性能以及较低的碳排放,有望取代水泥应用于乳化沥青冷再生混合料中。本工作通过构建地聚物来增强乳化沥青冷再生混合料的性能。首先,研究不同材料组成地聚物乳化沥青冷再生混合料的间接拉伸强度发展规律;其次,研究该冷再生混合料的路用性能、动态特性以及微结构特征。研究结果表明:地聚物在28 d养生时可以显著提升冷再生混合料的间接拉伸强度,同时地聚物乳化沥青冷再生混合料的高温性能、低温性能及抗水损害性能均能满足要求,且冷再生混合料的动态模量仍存在频率-温度依赖。此外,乳化沥青破乳产生的沥青膜与地聚物反应产物形成了相互交织的结构,这可以解释其宏观力学性能特征。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林俊涛
钟超
王宗瑞
徐方
朱晓斌
关键词:  冷再生混合料  地聚物  乳化沥青  强度发展  路用性能  动态模量    
Abstract: Geopolymer have potential to replace cement in cold recycled asphalt mixtures due to its high performance and low carbon emissions. This study aims to enhance the performance of cold recycled asphalt mixtures by incorporating geopolymer. Firstly, the development of indirect tensile strength of emulsified asphalt cold recycling mixtures with different material compositions of geopolymer was investigated. Secondly, the pavement performance, dynamic properties, and microstructure characteristics of the cold recycled asphalt mixtures were studied. The results indicate that geopolymer can significantly improve the indirect tensile strength of the cold recycled asphalt mixtures after 28-day curing. Moreover, the high-temperature performance, low-temperature performance, and resistance to water damage of the cold recycled asphalt mixtures with geopolymer meet the requirements. Additionally, the dynamic modulus of the cold recycling mixture still exhibits frequency-temperature depen-dence. Furthermore, the intertwined structure formed by the asphalt film produced by asphalt emulsion demulsification and the reaction products of geopolymer explains its macroscopic mechanical performance characteristics.
Key words:  cold recycled mixture    geopolymer    asphalt emulsion    strength development    pavement performance    dynamic modulus
出版日期:  2025-09-25      发布日期:  2025-09-11
ZTFLH:  U414  
基金资助: 国家自然科学基金(52278285;51908522);浙江省道桥检测与养护技术研究重点实验室开放课题(202305Z)
通讯作者:  *林俊涛,博士,中国地质大学(武汉)工程学院副教授。目前主要从事道路工程材料以及固废资源化利用研究工作。linjt@cug.edu.cn   
引用本文:    
林俊涛, 钟超, 王宗瑞, 徐方, 朱晓斌. 地聚物乳化沥青冷再生混合料的强度发展特征与性能研究[J]. 材料导报, 2025, 39(18): 24050037-6.
LIN Juntao, ZHONG Chao, WANG Zongrui, XU Fang, ZHU Xiaobin. Research on the Strength Development Characteristics and Performance of Cold Recycled Mixtures with Geopolymer and Asphalt Emulsion. Materials Reports, 2025, 39(18): 24050037-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050037  或          https://www.mater-rep.com/CN/Y2025/V39/I18/24050037
1 Xiao F P, Yao S, Wang J Y, et al. Construction and Building Materials, 2018, 180(8), 579.
2 Hao L, Wang W L, Wu J L, et al. Highway, 2023, 68(1), 333( in Chinese).
郝林, 王文路, 吴建灵, 等. 公路, 2023, 68(1), 333.
3 Ma T, Luan Y C, He L, et al. Journal of Traffic and Transportation Engineering, 2023, 23(2), 1(in Chinese).
马涛, 栾英成, 何亮, 等. 交通运输工程学报, 2023, 23(2), 1.
4 Wang M H, Wang C H, Gao X. Materials Reports, 2023, 37(7), 21080241(in Chinese).
王梦浩, 王朝辉, 高璇, 等. 材料导报, 2023, 37(7), 21080241.
5 Meneses J P C, Vasconcelos K, Bernucci L L B. Construction and Building Materials, 2022, 318, 126003.
6 Wei T Z, Hong J X, Lin J T. Journal of Building Materials, 2017, 20(2), 310(in Chinese).
魏唐中, 洪锦祥, 林俊涛. 建筑材料学报, 2017, 20(2), 310.
7 Ayar P. Construction and Building Materials, 2018, 178(7), 551.
8 Li Q, Zhu C Z, Zhang H L, et al. Construction and Building Materials, 2022, 319, 126120.
9 Amir M, Pooyan A. International Journal of Pavement Engineering, 2016, 17(3), 211.
10 Yang Lian, Xu Z C, Zhou H N, et al. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(2), 124(in Chinese).
杨涟, 徐周聪, 周浩南, 等. 重庆交通大学学报(自然科学版), 2022, 41(2), 124.
11 Cui C, Li Y, Dang Y Z, et al. Materials Reports, 2025, 39(1), 23110101(in Chinese).
崔潮, 李渊, 党颖泽, 等. 材料导报, 2025, 39(1), 23110101.
12 Liu F Q, Guo W D, Chen E Z, et al. Journal of Chongqing University of Technology (Natural Science), 2024, 38(4), 108(in Chinese).
刘富强, 郭伟东, 陈二忠, 等. 重庆理工大学学报(自然科学), 2024, 38(4), 108.
13 Liu F Q, Guo W D, Guo P, et al. Journal of Chongqing University of Technology (Natural Science), 2024, 38(12), 93(in Chinese).
刘富强, 郭伟东, 郭平, 等. 重庆理工大学学报(自然科学), 2024, 38(12), 93.
14 Dong Y S, Hou Y, Zhu Chen, et al. Highway, 2021, 66(9), 323(in Chinese).
董元帅, 侯芸, 朱琛, 等. 公路, 2021, 66(9), 323.
15 Thanon B, Peerapong J, Teewara S, et al. Materials, 2021, 14(22), 7017.
16 Minstry of Transport of the People's Republic of China. Standard test methods of bitumen and bituminous mixtures for highway engineering:JTG E20-2011. China Communications Press, China, 2011(in Chinese).
中华人民共和国交通运输部. 公路工程沥青及沥青混合料试验规程:JTG E20-2011. 人民交通出版社, 2011.
17 Minstry of Transport of the People's Republic of China. Technical specifications for highway asphalt pavement recycling:JTG T5521-2019, China Communications Press, China, 2019.
中华人民共和国交通运输部. 公路沥青路面再生技术规范:JTG T5521-2019, 人民交通出版社, 2019.
18 Lin J T, Hong J X, Xiao Y. Journal of Cleaner Production, 2017, 156(9), 337.
19 Lei J J. Highway, 2023(11), 8(in Chinese).
雷军军. 公路, 2023(11), 8.
20 Li P L, Zhang Z Q, WANG B G. Journal of Highway and Transportation Research and Development, 2016, 33(1), 1(in Chinese).
栗培龙, 张争奇, 王秉纲. 公路交通科技, 2016, 33(1), 1.
[1] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[2] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[3] 张海虎, 呙润华, 钱劲松. 蓄盐材料、蓄盐沥青混合料性能的研究进展[J]. 材料导报, 2025, 39(16): 24060219-14.
[4] 崔潮, 李渊, 党颖泽, 王岚, 彭晖. 碱-矿渣-偏高岭土基地聚物与骨料的界面粘结机理[J]. 材料导报, 2025, 39(1): 23110101-8.
[5] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[6] 周铭钰, 刘曙光, 吴超凡, 刘军, 张恒龙, 张帅, 李启石. 基于水性环氧乳化沥青的超薄磨耗层级配设计及性能对比研究[J]. 材料导报, 2024, 38(24): 23110085-8.
[7] 刘圣洁, 曹旭, 张钰林, 傅永腾, 焦晓东. 水性环氧树脂复合改性乳化沥青固化行为及性能研究[J]. 材料导报, 2024, 38(24): 23090085-7.
[8] 虞将苗, 冯致皓, 陈富达, 于华洋. 乳化沥青冷再生路面研究进展:材料特性、组成设计及性能评价[J]. 材料导报, 2024, 38(22): 24030095-10.
[9] 司春棣, 崔亚宁, 李松, 贾彦顺, 凡涛涛, 张义. 铁尾矿在沥青路面中的资源化利用研究进展与展望[J]. 材料导报, 2024, 38(22): 24050001-13.
[10] 唐杰, 赵华, 高红成. 碳化硅粉填充沥青混合料微波自愈合性能及合理掺量[J]. 材料导报, 2024, 38(20): 23080070-10.
[11] 徐浩, 周双喜, 张浩东, 曾晓辉. 高速铁路板式无砟轨道水泥乳化沥青砂浆粘弹性的研究进展[J]. 材料导报, 2024, 38(20): 23060058-10.
[12] 赵晓康, 张久鹏, 胡勤石, 裴建中, 程科, 张柳. 长余辉水性道面标线涂料的制备与路用性能[J]. 材料导报, 2024, 38(15): 23020088-7.
[13] 宋天诣, 曲星宇, 潘竹. 地聚物的耐高温性能研究进展[J]. 材料导报, 2023, 37(8): 21060242-9.
[14] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[15] 王振军, 阎凤凤, 张含笑, 梁晴陨. 乳化沥青与RAP再生界面融合特征研究进展[J]. 材料导报, 2023, 37(7): 21030199-10.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed