Please wait a minute...
材料导报  2025, Vol. 39 Issue (18): 24040241-11    https://doi.org/10.11896/cldb.24040241
  无机非金属及其复合材料 |
碱激发矿渣/粉煤灰沙漠砂混凝土的基本力学性能及微观特性
张萌1,2,*, 窦智1, 王泽平1, 温勇1
1 新疆大学建筑工程学院,乌鲁木齐 830017
2 新疆土木工程技术研究中心,乌鲁木齐 830017
Alkali-activated Slag/Fly Ash Desert Sand Concrete:Basic Mechanical Properties and Microstructural Characteristics
ZHANG Meng1,2,*, DOU Zhi1, WANG Zeping1, WEN Yong1
1 School of Architecture and Engineering, Xinjiang University, Urumqi 830017, China
2 Xinjiang Civil Engineering Technology Research Center, Urumqi 830017, China
下载:  全 文 ( PDF ) ( 54356KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以沙漠砂(DS)取代细骨料制备碱激发矿渣/粉煤灰沙漠砂混凝土(Alkali-activated slag/fly ash desert sand concrete,AADSC),研究不同沙漠砂、粉煤灰(FA)取代率对混凝土的工作性能、力学性能的影响,并通过XRD、SEM与MIP对其水化产物、微观形貌及孔隙结构进行分析。结果表明,相较于未掺DS组,DS掺量为20%的AADSC的28、91 d立方体抗压强度分别增加了7.4%和22.6%。DS的掺入明显改善了混凝土前期(3、7、28 d)强度,也显著增强了混凝土后期(91 d)强度,且掺入适量的DS可改善混凝土孔隙分布特征及微观结构,提升混凝土密实度。混凝土的28 d抗压强度、抗折强度和轴心抗压强度均随着FA掺量的增加先增大后减小,且FA的掺入对其后期强度发展也有较为明显的增强效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张萌
窦智
王泽平
温勇
关键词:  沙漠砂  碱激发混凝土  固体废弃物  力学性能  微观结构    
Abstract: Utilizing desert sand (DS) as a replacement for fine aggregate, alkali-activated slag/fly ash desert sand concrete (AADSC)was fabricated to investigate the impact of varying desert sand and fly ash (FA) replacement ratios on the workability and fundamental mechanical properties of the concrete. The hydration products, microstructure, and pore structure of the AADSC were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and mercury intrusion porosimetry (MIP). The results show that, compared to the concrete without DS, when the DS amount is 20%, the 28 d and 91 d cubic compressive strength of AADSC increases by 7.4% and 22.6% respectively. The addition of DS significantly improves the early-age (3, 7, and 28 d) strength of concrete, as well as substantially enhances the later-age (91 d) strength. Moreover, the addition of an appropriate amount of DS can improve the pore distribution characteristics and microstructure of the concrete, and increase its density. The 28-day compressive strength, flexural strength, and axial compressive strength of the concrete all initially increase and then decrease with the increase in FA content. Additionally, the incorporation of FA also has a relatively significant effect on enhancing its later-age strength development.
Key words:  desert sand    alkali-activated concrete    solid waste    mechanical property    microstructure
出版日期:  2025-09-25      发布日期:  2025-09-11
ZTFLH:  TU52  
基金资助: 自治区科技计划项目-自然科学基金-青年基金(2022D01C684);自治区科技计划项目-重点研发专项(2024B04013-1;2022B03036)
通讯作者:  *张萌,新疆大学建筑工程学院高级实验师、硕士研究生导师。主要从事寒区混凝土材料及结构耐久性能、混凝土材料内养护关键技术及固体废弃物综合利用等。zhangmeng@xju.edu.cn   
引用本文:    
张萌, 窦智, 王泽平, 温勇. 碱激发矿渣/粉煤灰沙漠砂混凝土的基本力学性能及微观特性[J]. 材料导报, 2025, 39(18): 24040241-11.
ZHANG Meng, DOU Zhi, WANG Zeping, WEN Yong. Alkali-activated Slag/Fly Ash Desert Sand Concrete:Basic Mechanical Properties and Microstructural Characteristics. Materials Reports, 2025, 39(18): 24040241-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040241  或          https://www.mater-rep.com/CN/Y2025/V39/I18/24040241
1 Shehata N, Sayed E T, Abdelkareem M A. Science of the Total Environment, 2021, 762, 143166.
2 Benhelal E, Zahedi G, Shamsaei E, et al. Journal of Cleaner Production, 2013, 51, 142.
3 Colangelo F, Cioffi R, Roviello G, et al. Composites Part B:Engineering, 2017, 129, 11.
4 Naskar S, Chakraborty A K. Perspectives in Science, 2016, 8, 273.
5 Wang J, Basheer P A M, Nanukuttan S V, et al. Construction and Building Materials, 2016, 108, 56.
6 Ameri F, Shoaei P, Zareei S A, et al. Construction and Building Materials, 2019, 222, 49.
7 Coppola B, Palmero P, Montanaro L, et al. Journal of the European Ceramic Society, 2020, 40(11), 3776.
8 Zheng W Z, Zhou M N, Wang Y. Journal of Building Structures, 2019, 40(1), 28(in Chinese).
郑文忠, 邹梦娜, 王英. 建筑结构学报, 2019, 40(1), 28.
9 Coffetti D, Crotti E, Gazzaniga G, et al. Cement and Concrete Research, 2022, 154, 106718.
10 Srivastava A, Singh S. Journal of Cleaner Production, 2020, 253, 11970606.
11 Mette B, Jim B, Chris H, et al. Nature, 2019, 571(7763), 29.
12 Zhao S, Ding X, Zhao M, et al. Construction and Building Materials, 2017, 138247.
13 Ding X, Li C, Xu Y, et al. Construction and Building Materials, 2016, 10867.
14 Zhang M, Liu H, Sun S, et al. Applied Sciences, 2019, 9(19), 4151.
15 Chen Q L, Liu H F, Han L, et al. Shock and Vibration, 2022, 2022, 8680750.
16 Zhao Y, Hu X, Shi C, et al. Construction and Building Materials, 2021, 295, 123602.
17 Du P, Abduljabbar S Y, Keyou C, et al. Journal of Building Engineering, 2021, 42.
18 Wang Y S. Research of the effect on steel fiber and rubber powder on the mechanical characteristics and the durability of the desert sand concrete. Master's Thesis, Ningxia University, China, 2013(in Chinese).
王勇升. 钢纤维、橡胶粉对沙漠砂混凝土力学性能及耐久性的试验研究, 硕士学位论文, 宁夏大学, 2013.
19 Zhang W, Zheng M, Zhu L, et al. Construction and Building Materials, 2022, 342(B), 128065.
20 Shen Y J, Peng C, Hao J S, et al. Construction and Building Materials, 2022, 327.
21 Jin H B, Song X J, Liu F H. Applied Mechanics and Materials, 2012, 1801(174), 604.
22 Li Z Q, Yang S, Wang G Q, et al. Concrete, 2016(9), 92 (in Chinese).
李志强, 杨森, 王国庆, 等. 混凝土, 2016(9), 92.
23 Liu C, Lin X, Zhu C, et al. Journal of Materials Science and Engineering, 2022, 40(4), 695(in Chinese).
刘超, 林鑫, 朱超, 等. 材料科学与工程学报, 2022, 40(4), 695.
24 Luo J F, He L, Pan Z, et al. Construction and Building Materials, 2013, 47, 131.
25 Tian L Y, Chen X, Li X, et al. Construction and Building Materials, 2023, 373, 130755.
26 Jain D, Sharma R, Bansal P P. Journal of Materials in Civil Engineering, 2021, 33(8).
27 Li S T, Chen X D, Zhang W, et al. Case Studies in Construction Materials, 2023, 19, e02264.
28 Li S T, Chen X D, Zhang W, et. al. Acta Materiae Compositae Sinica, 2022, 39(1), 335(in Chinese).
李升涛, 陈徐东, 张伟, 等. 复合材料学报, 2022, 39(1), 335.
29 Xia D T, Chen R L, Chen J J, et al. Construction and Building Materials, 2023, 398, 131728.
30 Wang A, Zhang C, Sun W. Cement and Concrete Research, 2003, 33(12), 2023.
31 Ji X, Gu X, Wang Z, et al. Minerals, 2022, 13(1), 30.
32 Deb P S, Sarker P K, Barbhuiya S. Cement and Concrete Composites, 2016, 72, 235.
33 Huseien G F, Tahir M M, Mirza J, et al. Construction and Building Materials, 2018, 175, 174.
34 Yang T, Zhu H, Zhang Z, et al. Cement and Concrete Research, 2018, 109, 198.
35 Yuan Q, Huang Y, Huang T, et al. Journal of Central South University, 2022, 29(1), 282.
36 Puligilla S, Mondal P. Cement and concrete Research, 2013, 43, 70.
37 Saedi M, Behfarnia K, Soltanian H. Journal of Building Engineering, 2019, 26, 100897.
38 Rakhimova N R, Rakhimov R Z, Naumkina N I, et al. Cement and Concrete Composites, 2016, 72, 268.
39 Su Y X. Experimental study on basic mechanical properties of gangue concrete. Master's Thesis, Xi'an University of Architecture and Technology, China, 2021(in Chinese).
苏煜翔. 煤矸石混凝土基本力学性能试验研究, 硕士学位论文, 西安建筑科技大学, 2021.
40 Puertas F, Fernández-Jiménez A. Cement and Concrete Composites, 2003, 25(3), 287.
41 Xue L, Zhang Z, Liu H, et al. Construction and Building Materials, 2022, 316, 126068.
42 Mastali M, Kinnunen P, Dalvand A, et al. Construction and Building Materials, 2018, 190, 533.
43 Ye H, Radlińska A. Cement and Concrete Research, 2016, 88, 126.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 姜彦杰, 刘浩天, 刘海峰, 车佳玲, 杨维武. 硫酸盐冻融后沙漠砂混凝土单轴受压力学性能试验研究[J]. 材料导报, 2025, 39(7): 23110222-11.
[14] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[15] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed