Please wait a minute...
材料导报  2025, Vol. 39 Issue (18): 24040090-7    https://doi.org/10.11896/cldb.24040090
  无机非金属及其复合材料 |
玄武岩-聚丙烯纤维增强混凝土在杂散电流与硫酸盐作用下的劣化规律
文波1,2,*, 田伟1,2, 张路3, 牛荻涛1,2, 嵇智远1,2
1 西安建筑科技大学土木工程学院,西安 710055
2 绿色建筑全国重点实验室,西安 710055
3 西安建筑科技大学材料科学与工程学院,西安 710055
Deterioration Pattern of Basalt-Polypropylene Fiber Reinforced Concrete Under Stray Currents and Sulfate Action
WEN Bo1,2,*, TIAN Wei1,2, ZHANG Lu3, NIU Ditao1,2, JI Zhiyuan1,2
1 School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 State Key Laboratory of Green Building, Xi'an 710055, China
3 College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 18548KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究杂散电流与硫酸盐共同作用对混杂纤维混凝土耐久性的影响,通过对玄武岩/聚丙烯纤维增强混凝土进行抗压强度、相对动弹性模量和损伤层厚度等测试,研究其在杂散电流与硫酸盐作用下的损伤机理及劣化规律。同时对杂散电流与硫酸盐作用后的混杂纤维混凝土微观形貌和物相组成进行了分析。结果表明:(1) 杂散电流会加速硫酸根离子侵蚀,导致混凝土薄弱部位离子聚集、凝胶材料破坏及裂缝生成,从而显著降低相对动弹性模量;(2)在相同侵蚀龄期下,NC-30、BC-30-0.1、PC-30-0.1、BPC-30-0.1和BPC-30-0.2的抗压强度分别降低了43.4%、34.2%、39.1%、26.2%和49.7%;(3)不同纤维混凝土在在相同侵蚀天数下,与NC-30相比,BPC-30-0.2、PC-30-0.1、BC-30-0.1、BPC-30-0.1的损伤层厚度分别降低了-4.4%、1.4%、5.4%、10.4%。进而建立了杂散电流与硫酸盐共同作用下考虑纤维、杂散电流密度等因素的混杂纤维混凝土损伤层厚度预测模型;(4)随着杂散电流的作用,OH-发生迁移,混凝土内部pH降低,Ca(OH)2含量减小;碳硫硅钙石衍射峰谱下降,碳硫硅钙石发生分解反应。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
文波
田伟
张路
牛荻涛
嵇智远
关键词:  混杂纤维  杂散电流  硫酸盐侵蚀  损伤机理  劣化行为    
Abstract: In order to investigate the impact of stray currents and sulfate on the durability of hybrid fiber concrete, researchers conducted tests on the compressive strength, relative dynamic elastic modulus, and damage layer thickness of basalt/polypropylene fiber-reinforced concrete. These tests aimed to elucidate the damage mechanism and deterioration pattern under the influence of stray currents and sulfate. The micro-morphology and physical composition of hybrid fiber concrete after stray currents and sulfate interaction were also analyzed. The results revealed that:(ⅰ) Stray currents accelerate sulfate ion erosion, leading to ion aggregation, gel material destruction, and crack generation in the weak areas of concrete, thus significantly reducing the relative dynamic elastic modulus.(ⅱ) At the same erosion age, the compressive strengths of NC-30, BC-30-0.1, PC-30-0.1, BPC-30-0.1, and BPC-30-0.2 were reduced by 43.4%, 34.2%, 39.1%, 26.2%, and 49.7%, respectively.(ⅲ) Under the same number of erosion days, compared with NC-30, the thickness of the damage layer for BPC-30-0.2, PC-30-0.1, BC-30-0.1, and BPC-30-0.1 decreased by -4.4%, 1.4%, 5.4%, and 10.4%, respectively. Furthermore, a predictive model for the damage layer thickness of hybrid fiber-reinforced concrete considering factors such as fibers and stray current density under the combined action of stray current and sulfate was established.(ⅳ) With the migration of OH- transported by stray currents, the internal pH of the concrete decreased, and the content of Ca(OH)2 reduced. This was evidenced by a decrease in the peak spectra of TSA diffraction and the occurrence of TSA decomposition reactions.
Key words:  hybrid fiber    stray current    sulfate erosion    damage mechanism    deterioration behavior
出版日期:  2025-09-25      发布日期:  2025-09-11
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52208203;52378535);中国博士后科学基金(2023MD734209);陕西省自然科学基础研究计划(2024GH-YBXM-03;2025SYS-SYSCZD-051);陕西省教育厅科研项目(23JP081);陕西省大学生创新创业训练计划(2024107030)
通讯作者:  *文波,西安建筑科技大学土木工程学院教授、博士研究生导师。主要研究方向为工程结构抗震及抗火、工程结构耐久性与寿命预测、建筑固废资源再利用、建筑全生命周期低碳技术、工程结构智能运维及健康监测。wenbo_mail@163.com   
引用本文:    
文波, 田伟, 张路, 牛荻涛, 嵇智远. 玄武岩-聚丙烯纤维增强混凝土在杂散电流与硫酸盐作用下的劣化规律[J]. 材料导报, 2025, 39(18): 24040090-7.
WEN Bo, TIAN Wei, ZHANG Lu, NIU Ditao, JI Zhiyuan. Deterioration Pattern of Basalt-Polypropylene Fiber Reinforced Concrete Under Stray Currents and Sulfate Action. Materials Reports, 2025, 39(18): 24040090-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040090  或          https://www.mater-rep.com/CN/Y2025/V39/I18/24040090
1 China Iron and Steel Association. World Metals, 2019(12), 12 (in Chinese).
中国钢铁工业协会. 世界金属导报, 2019(12), 12.
2 Zhang E M. The anti-erosion performance of metro concrete under the effect of bending load and stray current coupled with corrosive medium. Master's Thesis, South China University of Technology, China, 2011 (in Chinese).
张二猛. 弯曲荷载及杂散电流与腐蚀介质复合作用下地铁混凝土的抗侵蚀性能. 硕士学位论文, 华南理工大学, 2011.
3 Liu Y F. Study on the influence of stray current on sulfate corrosionconcrete. Master's Thesis, Xi'an University of Architecture and Technology, China, 2019 (in Chinese).
刘宇飞. 杂散电流对硫酸盐侵蚀混凝土的影响研究. 硕士学位论文, 西安建筑科技大学, 2019.
4 Zhang Y S, Huang R, Yang Y G, et al. Journal of Building Materials, 2017, 20(3), 449 (in Chinese).
张云升, 黄冉, 杨永敢, 等. 建筑材料学报, 2017, 20(3), 449.
5 Jin Z Q. Durability and life prediction of concrete under harsh environment in western China. Ph. D. Thesis, Southeast University, China, 2006 (in Chinese).
金祖权. 西部地区严酷环境下混凝土的耐久性与寿命预测. 博士学位论文, 东南大学, 2006.
6 Yu H F, Liu J L, Zhang Y S, et al. Journal of Nanjing University of Aeronautics and Astronautics, 2007(2), 240 (in Chinese).
余红发, 刘俊龙, 张云升, 等. 南京航空航天大学学报, 2007. (2), 240.
7 Geng J. Study on deterioration mechanism of reinforced concrete under the coexistence of stray current and chloride ions. Ph. D. Thesis, Wuhan University of Technology, China, 2008 (in Chinese).
耿健. 杂散电流与氯离子共存环境下钢筋混凝土劣化机理的研究. 博士学位论文, 武汉理工大学, 2008.
8 Wu Q S. Study on steel bar corrosion in concrete under the coupling effect of stray current and chloride ions. Master's Thesis, East China Jiaotong University, China, 2011 (in Chinese).
吴泉水. 杂散电流与氯离子耦合作用下混凝土中钢筋锈蚀研究. 硕士学位论文, 华东交通大学, 2011.
9 Wang K, Cheng Z C, Wang X G, et al. Architecture Technology, 2016, 47(1), 32 (in Chinese).
王凯, 程宗昌, 王信刚, 等. 建筑技术, 2016, 47(1), 32.
10 Zhang E M, Zhu H L, Guangdong Building Materials, 2013(12), 32 (in Chinese).
张二猛, 朱洪亮. 广东建材, 2013(12), 32.
11 Huang Qian, Wang Chong, Zhou Ying. Journal of Hunan University (Natural Sciences), 2016(12) (in Chinese).
黄谦, 王冲, 周莹. 湖南大学学报(自然科学版), 2016(12). 8.
12 Susanto A, Koleva A D, Breugel V K, et al. Journal of Advanced Concrete Technology, 2017, 15(6), 244.
13 Huo Linying, Bi Jihong, Zhao Yun, et al. Journal of Building Materials, 2022, 25(10), 1034 (in Chinese).
霍琳颖, 毕继红, 赵云, 等. 建筑材料学报, 2022, 25(10), 1034.
14 Yu R, Spiesz P, Brouwers H. Construction and Building Materials, 2014, 65, 140.
15 Farzad M, Azizinamini A. Construction and Building Materials, 2017, 156, 402.
16 Qiu J, , Lim X, Yang E. Cement and Concrete Research, 2016, 90, 127.
17 Su L, Niu D T, Huang D G, et al. Journal of Building Materials, 2022, 25(1), 44 (in Chinese).
苏丽, 牛荻涛, 黄大观, 等. 建筑材料学报, 2022, 25(1), 44.
18 Yin J H, Ding Y N, Niederegger C, et al. Concrete, 2007(3), 16 (in Chinese).
尹机会, 丁一宁, Niederegger C, 等. 混凝土, 2007(3), 16.
19 Hua Y, Zeng Y, Liu R H. Low Temperature Architecture Technology, 1998(3), 18 (in Chinese).
华渊, 曾艺, 刘荣华. 低温建筑技术, 1998(3), 18.
20 Niu D T, Luo Y, Su L, et al. Materials Reports, 2022, 36(13), 115 (in Chinese).
牛荻涛, 罗扬, 苏丽, 等. 材料导报, 2022, 36(13), 115.
21 Beijing Institute of Subway Design. Technical standard for stray current corrosion protection in metro, China Planning Press, China, 1993, pp. 4(in Chinese).
北京市地下铁道科学技术研究所. 地铁杂散电流腐蚀防护技术规程, 中国计划出版社, 1993. pp. 4.
22 Saito H, Deguchi A. Cement and Concrete Research, 2000, 30(11), 1815.
23 Sahmaran M, Kasap O, Duru K. Cement and Concrete Composites, 2007, 29(3), 159.
24 SanthanamM, Cohen M D, Olek J. Cement and Concrete Research, 2002, 32(6), 915.
25 Sun Z, He W, Niu D, et al. Buildings, 2022, 13(1), 84.
26 Zhang J. Experimental study on preparation and mechanical properties of basalt-polypropylene hybrid fiber concrete with high durability. Master's Thesis, Xi'an University of Architecture and Technology, China, 2017 (in Chinese).
张剑. 玄武岩-聚丙烯混杂纤维高耐久性混凝土的制备与物理力学性能研究. 硕士学位论文, 西安建筑科技大学, 2017.
27 Sun Z, Niu D T, Zhang L, et al. Journal of Functional Materials. 2021, 52(12), 12190 (in Chinese).
孙振, 牛荻涛, 张路, 等. 功能材料, 2021, 52(12), 12190.
28 Kou J L, Zhang Z Y, Sun G X, et al. Building Structure, 2021, 51(4), 91(in Chinese).
寇佳亮, 张卓越, 孙国兴, 等. 建筑结构, 2021, 51(4), 91.
29 JIANG C H, Zhao H, Chen D, et al. Bulletin of the Chinese Ceramic Society, 2007(6), 1084(in Chinese).
江朝华, 赵辉, 陈达, 等. 硅酸盐通报, 2007(6), 1084.
[1] 张路, 徐智明, 文波, 牛荻涛, 李辉, 梁浩男, 嵇智远. 杂散电流作用下混杂纤维混凝土SO42-迁移与反应规律研究[J]. 材料导报, 2025, 39(18): 24060080-8.
[2] 侯宇颖, 李涛, 吕寅, 陈刚, 胡夏闽, 唐磊, 杨建明. 粉煤灰和钢渣粉对磷酸钾镁水泥浆体硫酸盐侵蚀行为的影响[J]. 材料导报, 2025, 39(18): 24080025-7.
[3] 张雷, 姜超, 朱学军, 谢群, 刘文胜, 赵振振, 郑元武, 李阳. 混杂纤维水泥基复合材料弯曲性能试验研究[J]. 材料导报, 2025, 39(14): 24040120-8.
[4] 甘德清, 于泽皞, 刘志义, 孙海宽. 水浸作用下磁铁矿石动态破碎特征及损伤机理[J]. 材料导报, 2025, 39(13): 24060165-10.
[5] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[6] 孙茂钧, 胡涛, 栾红波, 李茜, 佘祖新, 柏遇合, 王玲, 杨小奎, 周堃. 胶粘剂在湿热环境下的老化行为规律及环境损伤机理[J]. 材料导报, 2024, 38(5): 22090006-6.
[7] 王照耀, 梁兴文, 翟天文, 王莹, 吴奎. 钢-PVA混杂纤维增强水泥基复合材料永久模板叠合RC单向板短期刚度计算方法[J]. 材料导报, 2024, 38(3): 22060083-9.
[8] 张若楠, 韦朋余, 王珂, 曾庆波, 王连, 宋培龙. 海水环境下船用高强钢腐蚀疲劳损伤行为研究[J]. 材料导报, 2024, 38(23): 23090176-6.
[9] 康迎杰, 郭自利, 叶斌斌, 潘鹏. ECC全包裹混凝土的抗硫酸盐侵蚀和抗冻性能[J]. 材料导报, 2024, 38(22): 22100093-7.
[10] 崔涛涛, 宁宝宽, 郜殿伟, 夏旭东. 混杂纤维高强轻骨料混凝土单轴受压试验研究[J]. 材料导报, 2024, 38(2): 22040204-6.
[11] 王家滨, 张凯峰, 郑康华, 符梦涛. 完全浸泡再生混凝土Mg2+-SO42--Cl-侵蚀耐久性损伤规律与机理[J]. 材料导报, 2024, 38(18): 23050184-11.
[12] 韩宇栋, 郭奕群, 李嘉豪, 张同生, 韦江雄, 余其俊. 高密实多元复合水泥浆体组成设计与抗侵蚀性能研究[J]. 材料导报, 2023, 37(3): 21080213-7.
[13] 杨荣周, 徐颖, 刘家兴, 丁进甫, 谢昊天. 砂岩与类砂岩材料的动态力学及破坏特征对比分析[J]. 材料导报, 2023, 37(23): 22030265-11.
[14] 杨国梁, 毕京九, 董智文, 刘依, 韩子默, 李旭光. 基于数字图像相关技术的混杂纤维混凝土动态抗拉性能试验研究[J]. 材料导报, 2023, 37(21): 22030038-9.
[15] 梁永宸, 石宵爽, 张聪, 张滔, 王晓琪. 粉煤灰地聚物混凝土性能与环境影响的综合评价[J]. 材料导报, 2023, 37(2): 21060162-6.
[1] Guang MA,Xin CHEN,Licheng LU,Dongqun XIN,Li MENG,Hao WANG,Ling CHENG,Fuyao YANG. Monte Carlo Simulation of the Evolution of Goss Texture in Secondary Recrystallization of Thin Gauge Grain Oriented Silicon Steel[J]. Materials Reports, 2018, 32(2): 313 -315 .
[2] CHEN Jian, XU Hui. Research Progress of Graphene and Its Nanocomposites as Anodes for Lithium Ion Batteries[J]. Materials Reports, 2017, 31(9): 36 -44 .
[3] WANG Tiantian, XU Mengjia, XU Jijin, YU Chun, LU Hao. Influence of Second Welding Thermal Cycle on Reheat Cracking Sensitivity of CGHAZ in T23 Steel[J]. Materials Reports, 2017, 31(12): 56 -59 .
[4] XIE Jiale, YANG Pingping, LI Chang Ming. Stable and High-efficient α-Fe2O3 Based Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics[J]. Materials Reports, 2018, 32(7): 1037 -1056 .
[5] YANG Shicong, YAO Guowen, ZHANG Jinquan, SHI Kang. The Corrosion Fatigue Characteristic of Steel Strand Experiencing an Artificial Accelerated Salt Fog Ageing[J]. Materials Reports, 2018, 32(12): 1988 -1993 .
[6] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[7] LI Xiuli, TIE Shengnian. Effect of Quick-dissolving and High-viscosity Carboxymethyl Cellulose Sodium on Properties of Glauber’s Salt-based Composites Phase Change Energy Storage Materials with Different Phase Transition Temperature Gradient[J]. Materials Reports, 2018, 32(22): 3848 -3852 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] REN Xiuxiu, ZHU Yiju, ZHAO Shengxiang, HAN Zhongxi, YAO Lina. The Relationship Between Micromechanical Property and Friction Property of Four Kinds of Energetic Crystals[J]. Materials Reports, 2019, 33(z1): 448 -452 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed