Please wait a minute...
材料导报  2025, Vol. 39 Issue (13): 24060165-10    https://doi.org/10.11896/cldb.24060165
  无机非金属及其复合材料 |
水浸作用下磁铁矿石动态破碎特征及损伤机理
甘德清1,2,3,4, 于泽皞1,2,3,4, 刘志义1,2,3,4,*, 孙海宽1,2,3,4
1 华北理工大学矿业工程学院,河北 唐山 063210
2 矿产资源绿色开发与生态修复协同创新中心,河北 唐山 063210
3 河北省矿业开发与安全技术实验室,河北 唐山 063210
4 河北省矿山绿色智能开采技术创新中心,河北 唐山 063210
Characteristics of Dynamic Crushing and Damage Mechanism of Magnetite Ore Under Water Leaching Effect
GAN Deqing1,2,3,4, YU Zehao1,2,3,4, LIU Zhiyi1,2,3,4,*, SUN Haikuan1,2,3,4
1 College of Mining Engineering, North China University of Technology, Tangshan 063210, Hebei, China
2 Collaborative Innovation Center of Green Development and Ecological Restoration of Mineral Resources, Tangshan 063210, Hebei, China
3 Hebei Province Key Laboratory of Mining Development and Security Technology, Tangshan 063210, Hebei, China
4 Hebei Province Green Intelligent Mining Technology Innovation Center, Tangshan 063210, Hebei, China
下载:  全 文 ( PDF ) ( 30148KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究富水环境中磁铁矿石受地下水侵蚀后的动态损伤特性及破碎特征,采用分离式霍普金森压杆(SHPB)试验系统,对不同浸水时长的磁铁矿石开展冲击破碎试验,选取四种不同应变率的试验结果,分析磁铁矿石在不同试验参数下的力学特性以及破碎特征,引入应变率与浸水时长两个因素,建立磁铁矿石在不同应变率和浸水时长条件下的统计损伤本构模型,结合损伤曲线分析了浸水磁铁矿石全过程的损伤机理。结果表明:磁铁矿石动态峰值应力、弹性模量、峰值应变随应变率增加而增加;随浸水时长增加,矿石的峰值应变增加,峰值应力与弹性模量降低;应变率增加与浸水处理会改变矿石峰后阶段的应力跌落状态。浸水处理会促进磁铁矿石破碎,增加矿石单位体积吸收能,降低矿石破碎能耗,提高能量利用率。修正损伤本构模型的理论曲线与实测曲线在峰前阶段的吻合度较高,建立的损伤曲线表征了磁铁矿石全过程的损伤机理,磁铁矿石峰前阶段的损伤差异以水应力损伤为主导。磁铁矿石的水应力损伤与荷载损伤共同影响着磁铁矿石的破碎效果,水应力损伤可等效于部分荷载损伤,二者符合一定的比例关系,矿石的破碎效果较好。本工作的结果对富水矿体的安全生产以及磁铁矿石的破碎具有一定的指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
甘德清
于泽皞
刘志义
孙海宽
关键词:  磁铁矿石  浸水时长  SHPB冲击试验  应变率  动态破碎特征  损伤机理    
Abstract: In order to investigate the dynamic damage characteristics and crushing features ofgroundwater-eroded magnetite ore in a water-rich environment, the separate Hopkinson pressure bar (SHPB) test system was used to carry out impact crushing tests on magnetite ore with different submergence durations. The results of the tests with four different strain rates were selected to analyse the mechanical properties and crushing features of magnetite ore under different test parameters, and the factors of strain rate and submergence duration were introduced to establish a statistical damage constitutive model under different strain rate-submergence duration conditions, which was then combined with the damage curve to analyse the damage mechanism of the whole process of submerged magnetite ore. The results showed that the dynamic peak stress, elastic modulus and peak strain of magnetite ore increase with the increase of strain rate. The peak strain, peak stress, and elastic modulus correlated positively, negatively, and negatively, respectively, with water immersion time length. The increase of strain rate and water immersion treatment could lead to a change in the stress drop state of the ore at the post-peak stage. Water immersion treatment resulted in promotion of magnetite ore crushing, increase in the energy absorption per unit volume of ore, reduction in the energy consumption of ore crushing, and improvement of the energy utilisation. The theoretical curves of the modified damage ontology model coincided well with the measured curves in the pre-peak stage, and the established damage curves could characterise the damage mechanism of the whole process of magnetite ore. The damage difference in the pre-peak stage of magnetite ore was dominated by water stress damage. It could be concluded that the water stress damage and loading damage of magnetite ore jointly affect the crushing effect of magnetite ore. The water stress damage can be equivalent to part of the loading damage, and the two conform to a certain proportionality relationship, thereby promoting the ore crushing effect. The results of this study provide useful information for the safe production of water-rich ore bodies and the crushing of magnetite ore.
Key words:  magnetite ore    immersion time length    SHPB impact test    strain rate    dynamic crushing characteristic    damage mechanism
出版日期:  2025-07-10      发布日期:  2025-07-21
ZTFLH:  TD231  
基金资助: 国家自然科学基金(52074124)
通讯作者:  *刘志义,华北理工大学矿业工程学院副教授、硕士研究生导师。目前主要从事资源绿色开采理论与技术方面的研究工作。lzyncst@163.com   
作者简介:  甘德清,博士,华北理工大学矿业工程学院教授、博士研究生导师,研究方向为采矿工艺理论与技术、资源绿色开发与智能采矿。
引用本文:    
甘德清, 于泽皞, 刘志义, 孙海宽. 水浸作用下磁铁矿石动态破碎特征及损伤机理[J]. 材料导报, 2025, 39(13): 24060165-10.
GAN Deqing, YU Zehao, LIU Zhiyi, SUN Haikuan. Characteristics of Dynamic Crushing and Damage Mechanism of Magnetite Ore Under Water Leaching Effect. Materials Reports, 2025, 39(13): 24060165-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060165  或          https://www.mater-rep.com/CN/Y2025/V39/I13/24060165
1 Yuan P, Ma R Q.ChineseJournal of Rock Mechanics and Engineering, 2015, 34(S1), 2888 (in Chinese).
袁璞, 马瑞秋. 岩石力学与工程学报, 2015, 34(S1), 2888.
2 Chu F J, Liu D W, Tao M, et al.Chinese Journal of Engineering Science, 2017, 39(12), 1783 (in Chinese).
褚夫蛟, 刘敦文, 陶明, 等. 工程科学学报, 2017, 39(12), 1783.
3 Zheng G H, Xu J Y, Wang P, et al.Journal of Vibration and Shock, 2018, 37(16), 31 (in Chinese).
郑广辉, 许金余, 王鹏, 等. 振动与冲击, 2018, 37(16), 31.
4 Luo Y, Li S, Gong H, et al.Construction and Building Materials, 2023, 397, 132417.
5 Deng F, Han X L, Luo F Y, et al.Nonferrous Metals Science and Engineering, 2014, 5(6), 95 (in Chinese).
邓飞, 韩晓亮, 罗福友, 等. 有色金属科学与工程, 2014(6), 95.
6 Ding X L, Fan X T, Huang S L, et al.Chinese Journal of Rock Mechanics and Engineering, 2023, 42(11), 2601 (in Chinese).
丁秀丽, 樊炫廷, 黄书岭, 等. 岩石力学与工程学报, 2023, 42(11), 2601.
7 Deng J H, Yu C R, Huang X C.Railway Construction, 2009(9), 50 (in Chinese).
邓建华, 於昌荣, 黄醒春. 铁道建筑, 2009(9), 50.
8 Wang W, Yao Q, Wang A, et al.Geohazard Mechanics, 2023, 1, 244.
9 Yin T, Lu J, Guo W, et al.Theoretical and Applied Fracture Mechanics, 2024, 130, 10425.
10 Li Z H, Hao J W, Gan D Q, et al.Vibration and Impact, 2019, 38(12), 231 (in Chinese).
李占金, 郝家旺, 甘德清等. 振动与冲击, 2019, 38(12), 231.
11 Hao J W, Li Z J, Yang M H, et al.Mining Research and Development, 2018, 38(6), 49 (in Chinese).
郝家旺, 李占金, 杨美宏, 等. 矿业研究与开发, 2018, 38(6), 49.
12 Liu Z Y, Gan D Q, Yu Z H, et al.Journal of Rock Mechanics and Engineering, 2022, 41(S1), 2869 (in Chinese).
刘志义, 甘德清, 于泽皞, 等. 岩石力学与工程学报, 2022, 41(S1), 2869.
13 Liu Z Y, Gan D Q, Gan Z.Journal of Rock Mechanics and Engineering, 2021, 40(1), 126 (in Chinese).
刘志义, 甘德清, 甘泽. 岩石力学与工程学报, 2021, 40(1), 126.
14 Gao R, Wang H, Cao R, et al.Journal of Materials Research and Technology, 2024, 29, 1293.
15 Ye H W, Wen Y, Lei T, et al.Metal Mine, 2023(3), 65 (in Chinese).
叶海旺, 温颖, 雷涛, 等. 金属矿山, 2023(3), 65.
16 Pan B, Guo L J, Ning Y Y, et al. .Mining Research and Development, 2018, 38(8), 39 (in Chinese).
潘博, 郭连军, 宁玉滢, 等. 矿业研究与开发, 2018, 38(8), 39.
17 Wang L, Zou P, Jiao Z H, et al.Vibration and Impact, 2022, 41(14), 280 (in Chinese).
王磊, 邹鹏, 焦振华, 等. 振动与冲击, 2022, 41(14), 280.
18 Chai Y G, Liu L S, Zeng P, et al.Engineering Blasting,2022, 28(5), 23 (in Chinese).
柴耀光, 刘连生, 曾鹏等. 工程爆破, 2022, 28(5), 23.
19 Yin T B, Peng K, Wang L, et al.Shock and Vibration, 2016, 37, 175.
20 Subbiah K S, Mohamad-Hussein A, Samsuri A, et al.IOP Conference Series:Materials Science and Engineering, 2021, 1051(1), 012093.
21 Lemaitre J.Nuclear Engineering and Design, 1984, 80(2), 233.
22 Ming M Q, Feng L, Sun J Y.Metal Mining,2024(5), 169 (in Chinese).
吝曼卿, 冯磊, 孙郡阳, 等. 金属矿山, 2024(5), 169.
[1] 雷经发, 赵晨霞, 刘涛, 沈朝阳, 李思悦. 激光熔覆Inconel 625合金高温高应变率下的力学行为及本构模型[J]. 材料导报, 2025, 39(4): 23120263-7.
[2] 孙茂钧, 胡涛, 栾红波, 李茜, 佘祖新, 柏遇合, 王玲, 杨小奎, 周堃. 胶粘剂在湿热环境下的老化行为规律及环境损伤机理[J]. 材料导报, 2024, 38(5): 22090006-6.
[3] 张若楠, 韦朋余, 王珂, 曾庆波, 王连, 宋培龙. 海水环境下船用高强钢腐蚀疲劳损伤行为研究[J]. 材料导报, 2024, 38(23): 23090176-6.
[4] 雷经发, 沈强, 刘涛, 孙虹, 尹志强. 聚氯乙烯/热塑性聚氨酯共混合金的静动态力学性能及微观结构分析[J]. 材料导报, 2024, 38(19): 23010114-6.
[5] 王家滨, 张凯峰, 郑康华, 符梦涛. 完全浸泡再生混凝土Mg2+-SO42--Cl-侵蚀耐久性损伤规律与机理[J]. 材料导报, 2024, 38(18): 23050184-11.
[6] 刘雄飞, 和西民. 低应变率荷载作用下梯度泡沫铝力学性能研究[J]. 材料导报, 2023, 37(7): 22010266-7.
[7] 杨荣周, 徐颖, 刘家兴, 丁进甫, 谢昊天. 砂岩与类砂岩材料的动态力学及破坏特征对比分析[J]. 材料导报, 2023, 37(23): 22030265-11.
[8] 郭辉, 冯晶晶, 陈玉, 孙亚斌, 邱爽. 聚脲涂覆泡沫铝压缩力学性能及吸能特性研究[J]. 材料导报, 2023, 37(23): 22120195-7.
[9] 刘晋铭, 张寿松, 俞煌, 梅勇. 砂胶比对海水拌合全珊瑚骨料混凝土动态力学性能的影响[J]. 材料导报, 2023, 37(18): 22010233-7.
[10] 潘旺, 夏洋洋, 张超, 方宏远, 王复明. 新型聚氨酯弹性体注浆材料的压缩尺寸效应及应变率效应[J]. 材料导报, 2023, 37(15): 22020115-7.
[11] 徐长锋, 周友行, 肖加其, 李昱泽, 易倩. 长径比和应变率对海泡石的破碎能耗影响研究[J]. 材料导报, 2022, 36(Z1): 20120211-5.
[12] 张娜, 周健. 高温处理后玄武岩纤维水泥基复合材料应变率效应研究[J]. 材料导报, 2022, 36(Z1): 20040024-5.
[13] 王家滨, 侯泽宇, 张凯峰, 李恒. 再生混凝土高浓度Mg2+-SO42--Cl-复合盐侵蚀耐久性[J]. 材料导报, 2022, 36(23): 21080171-11.
[14] 罗志强, 赖家美, 黄志超, 莫明智, 李美艳. 缝合碳纤维泡沫夹芯复合材料反复低速冲击性能研究[J]. 材料导报, 2022, 36(19): 21050268-8.
[15] 孙科科, 彭小芹, 冉鹏, 王淑萍, 曾路, 李静静, 王双. 地聚合物混凝土抗冻性影响因素[J]. 材料导报, 2021, 35(24): 24095-24100.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed