Deterioration Pattern of Basalt-Polypropylene Fiber Reinforced Concrete Under Stray Currents and Sulfate Action
WEN Bo1,2,*, TIAN Wei1,2, ZHANG Lu3, NIU Ditao1,2, JI Zhiyuan1,2
1 School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China 2 State Key Laboratory of Green Building, Xi'an 710055, China 3 College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
Abstract: In order to investigate the impact of stray currents and sulfate on the durability of hybrid fiber concrete, researchers conducted tests on the compressive strength, relative dynamic elastic modulus, and damage layer thickness of basalt/polypropylene fiber-reinforced concrete. These tests aimed to elucidate the damage mechanism and deterioration pattern under the influence of stray currents and sulfate. The micro-morphology and physical composition of hybrid fiber concrete after stray currents and sulfate interaction were also analyzed. The results revealed that:(ⅰ) Stray currents accelerate sulfate ion erosion, leading to ion aggregation, gel material destruction, and crack generation in the weak areas of concrete, thus significantly reducing the relative dynamic elastic modulus.(ⅱ) At the same erosion age, the compressive strengths of NC-30, BC-30-0.1, PC-30-0.1, BPC-30-0.1, and BPC-30-0.2 were reduced by 43.4%, 34.2%, 39.1%, 26.2%, and 49.7%, respectively.(ⅲ) Under the same number of erosion days, compared with NC-30, the thickness of the damage layer for BPC-30-0.2, PC-30-0.1, BC-30-0.1, and BPC-30-0.1 decreased by -4.4%, 1.4%, 5.4%, and 10.4%, respectively. Furthermore, a predictive model for the damage layer thickness of hybrid fiber-reinforced concrete considering factors such as fibers and stray current density under the combined action of stray current and sulfate was established.(ⅳ) With the migration of OH- transported by stray currents, the internal pH of the concrete decreased, and the content of Ca(OH)2 reduced. This was evidenced by a decrease in the peak spectra of TSA diffraction and the occurrence of TSA decomposition reactions.
1 China Iron and Steel Association. World Metals, 2019(12), 12 (in Chinese). 中国钢铁工业协会. 世界金属导报, 2019(12), 12. 2 Zhang E M. The anti-erosion performance of metro concrete under the effect of bending load and stray current coupled with corrosive medium. Master's Thesis, South China University of Technology, China, 2011 (in Chinese). 张二猛. 弯曲荷载及杂散电流与腐蚀介质复合作用下地铁混凝土的抗侵蚀性能. 硕士学位论文, 华南理工大学, 2011. 3 Liu Y F. Study on the influence of stray current on sulfate corrosionconcrete. Master's Thesis, Xi'an University of Architecture and Technology, China, 2019 (in Chinese). 刘宇飞. 杂散电流对硫酸盐侵蚀混凝土的影响研究. 硕士学位论文, 西安建筑科技大学, 2019. 4 Zhang Y S, Huang R, Yang Y G, et al. Journal of Building Materials, 2017, 20(3), 449 (in Chinese). 张云升, 黄冉, 杨永敢, 等. 建筑材料学报, 2017, 20(3), 449. 5 Jin Z Q. Durability and life prediction of concrete under harsh environment in western China. Ph. D. Thesis, Southeast University, China, 2006 (in Chinese). 金祖权. 西部地区严酷环境下混凝土的耐久性与寿命预测. 博士学位论文, 东南大学, 2006. 6 Yu H F, Liu J L, Zhang Y S, et al. Journal of Nanjing University of Aeronautics and Astronautics, 2007(2), 240 (in Chinese). 余红发, 刘俊龙, 张云升, 等. 南京航空航天大学学报, 2007. (2), 240. 7 Geng J. Study on deterioration mechanism of reinforced concrete under the coexistence of stray current and chloride ions. Ph. D. Thesis, Wuhan University of Technology, China, 2008 (in Chinese). 耿健. 杂散电流与氯离子共存环境下钢筋混凝土劣化机理的研究. 博士学位论文, 武汉理工大学, 2008. 8 Wu Q S. Study on steel bar corrosion in concrete under the coupling effect of stray current and chloride ions. Master's Thesis, East China Jiaotong University, China, 2011 (in Chinese). 吴泉水. 杂散电流与氯离子耦合作用下混凝土中钢筋锈蚀研究. 硕士学位论文, 华东交通大学, 2011. 9 Wang K, Cheng Z C, Wang X G, et al. Architecture Technology, 2016, 47(1), 32 (in Chinese). 王凯, 程宗昌, 王信刚, 等. 建筑技术, 2016, 47(1), 32. 10 Zhang E M, Zhu H L, Guangdong Building Materials, 2013(12), 32 (in Chinese). 张二猛, 朱洪亮. 广东建材, 2013(12), 32. 11 Huang Qian, Wang Chong, Zhou Ying. Journal of Hunan University (Natural Sciences), 2016(12) (in Chinese). 黄谦, 王冲, 周莹. 湖南大学学报(自然科学版), 2016(12). 8. 12 Susanto A, Koleva A D, Breugel V K, et al. Journal of Advanced Concrete Technology, 2017, 15(6), 244. 13 Huo Linying, Bi Jihong, Zhao Yun, et al. Journal of Building Materials, 2022, 25(10), 1034 (in Chinese). 霍琳颖, 毕继红, 赵云, 等. 建筑材料学报, 2022, 25(10), 1034. 14 Yu R, Spiesz P, Brouwers H. Construction and Building Materials, 2014, 65, 140. 15 Farzad M, Azizinamini A. Construction and Building Materials, 2017, 156, 402. 16 Qiu J, , Lim X, Yang E. Cement and Concrete Research, 2016, 90, 127. 17 Su L, Niu D T, Huang D G, et al. Journal of Building Materials, 2022, 25(1), 44 (in Chinese). 苏丽, 牛荻涛, 黄大观, 等. 建筑材料学报, 2022, 25(1), 44. 18 Yin J H, Ding Y N, Niederegger C, et al. Concrete, 2007(3), 16 (in Chinese). 尹机会, 丁一宁, Niederegger C, 等. 混凝土, 2007(3), 16. 19 Hua Y, Zeng Y, Liu R H. Low Temperature Architecture Technology, 1998(3), 18 (in Chinese). 华渊, 曾艺, 刘荣华. 低温建筑技术, 1998(3), 18. 20 Niu D T, Luo Y, Su L, et al. Materials Reports, 2022, 36(13), 115 (in Chinese). 牛荻涛, 罗扬, 苏丽, 等. 材料导报, 2022, 36(13), 115. 21 Beijing Institute of Subway Design. Technical standard for stray current corrosion protection in metro, China Planning Press, China, 1993, pp. 4(in Chinese). 北京市地下铁道科学技术研究所. 地铁杂散电流腐蚀防护技术规程, 中国计划出版社, 1993. pp. 4. 22 Saito H, Deguchi A. Cement and Concrete Research, 2000, 30(11), 1815. 23 Sahmaran M, Kasap O, Duru K. Cement and Concrete Composites, 2007, 29(3), 159. 24 SanthanamM, Cohen M D, Olek J. Cement and Concrete Research, 2002, 32(6), 915. 25 Sun Z, He W, Niu D, et al. Buildings, 2022, 13(1), 84. 26 Zhang J. Experimental study on preparation and mechanical properties of basalt-polypropylene hybrid fiber concrete with high durability. Master's Thesis, Xi'an University of Architecture and Technology, China, 2017 (in Chinese). 张剑. 玄武岩-聚丙烯混杂纤维高耐久性混凝土的制备与物理力学性能研究. 硕士学位论文, 西安建筑科技大学, 2017. 27 Sun Z, Niu D T, Zhang L, et al. Journal of Functional Materials. 2021, 52(12), 12190 (in Chinese). 孙振, 牛荻涛, 张路, 等. 功能材料, 2021, 52(12), 12190. 28 Kou J L, Zhang Z Y, Sun G X, et al. Building Structure, 2021, 51(4), 91(in Chinese). 寇佳亮, 张卓越, 孙国兴, 等. 建筑结构, 2021, 51(4), 91. 29 JIANG C H, Zhao H, Chen D, et al. Bulletin of the Chinese Ceramic Society, 2007(6), 1084(in Chinese). 江朝华, 赵辉, 陈达, 等. 硅酸盐通报, 2007(6), 1084.