Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 24100032-11    https://doi.org/10.11896/cldb.24100032
  无机非金属及其复合材料 |
基于多机器学习模型的再生混凝土抗盐冻性能预测
康天蓓1,2, 梁玉1, 梁意博1, 王凤池3,*, 周静海2
1 沈阳建筑大学土木工程学院,沈阳 110168
2 沈阳建筑大学绿色宜居乡村建设研究院,沈阳 110168
3 沈阳建筑大学交通与测绘工程学院,沈阳 110168
Prediction of Salt-Freeze Resistance of Recycled Aggregate Concrete Based on Multiple Machine Learning Models
KANG Tianbei1,2, LIANG Yu1, LIANG Yibo1, WANG Fengchi3,*, ZHOU Jinghai2
1 School of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168, China
2 Green and Livable Rural Construction Institute, Shenyang Jianzhu University, Shenyang 110168, China
3 School of Transportation and Geomatics Engineering, Shenyang Jianzhu University, Shenyang 110168, China
下载:  全 文 ( PDF ) ( 17008KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 再生混凝土(RAC)抗盐冻性能的影响因素众多,包括外界环境耦合因素和材料自身特性等,为实现RAC抗盐冻性能的准确预测,给RAC结构的耐久性能设计提供数据支撑,本工作基于1 363组试验数据,选择9个影响RAC抗盐冻性的因素为输入特征,以抗压强度、质量损失率、相对动弹性模量作为输出目标,采用4种监督算法BPNN、RBFNN、SVM、RF和2种优化监督算法PSO-BPNN、GA-BPNN,并根据模型特征选取超参数进行监督算法优化,实现了RAC抗盐冻性能影响因素排序和性能精准预测。结果表明,再生骨料压碎指标、再生骨料取代率、水灰比和砂率是影响RAC抗盐冻性能的关键特征参数;6种监督算法中,PSO-BPNN预测模型经超参数优化后,对3个输出目标综合预测性能最优,具有合理的泛化能力和鲁棒性,其中对抗压强度预测的均方根误差RMSE、平均绝对误差MAE和决定系数R2分别为2.490 0、1.943 5和0.903 1;在此基础上,针对RF模型确定的关键特征参数设计了2种RAC配合比方案,使用PSO-BPNN模型进行了RAC的30年抗盐冻性能寿命预测,为RAC在实际工程中的耐久性能设计提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
康天蓓
梁玉
梁意博
王凤池
周静海
关键词:  监督算法  再生混凝土  再生骨料特性  抗盐冻性能    
Abstract: There are many factors affecting the salt-freeze resistance of recycled aggregate concrete (RAC), including external environmental coupling factors and its own material properties, etc. In order to accurately predict the salt-freeze resistance of RAC and provide data support for the durability design of RAC structure, in this work 9 factors affecting the salt-freeze resistance of RAC were selected as input features based on 1 363 sets of test data. The output targets are compressive strength, relative dynamic elastic modulus and mass loss rate. Four monitoring algorithms, including BPNN, RBFNN, SVM and RF, and two optimization monitoring algorithms, including PSO-BPNN and GA-BPNN, were adopted, and hyperparameters were selected according to the model characteristics to optimize the monitoring algorithm, so as to realize the ranking of factors affecting the salt-freeze resistance of RAC and the accurate prediction of performance. The results show that the crushing index of regenerated aggregate, the replacement rate of regenerated aggregate, the water-cement ratio and sand rate are the key characteristic parameters affecting the salt-freeze resistance of RAC. Among the six monitoring algorithms, the PSO-BPNN prediction model has the best comprehensive prediction performance for the three output targets after hyperparameter optimization, and has reasonable generalization ability and robustness. The RMSE, MAE and R2 for the prediction of compressive strength are 2.490 0, 1.943 5 and 0.903 1, respectively. On this basis, two kinds of RAC mix schemes were designed according to the key characteristic parameters determined by RF model, and PSO-BPNN model was used to predict the 30-year salt-freeze resistance life of RAC, which provided a reference for the durability design of RAC in practical engineering.
Key words:  monitoring algorithm    recycled aggregate concrete    characteristics of recycled aggregate    salt-freeze resistance
出版日期:  2025-10-10      发布日期:  2025-09-24
ZTFLH:  TU528.01  
基金资助: 国家自然科学基金(52108235);辽宁省教育厅基本科研项目(JYTMS20231578);沈阳市低碳交通建养与运营重点实验室(LJ232410153005JT-Y24-3)
通讯作者:  *王凤池,沈阳建筑大学交通与测绘工程学院教授、博士研究生导师。长期从事新型混凝土及建筑结构可靠性、新型地基处理技术等研究。cefcwang@sjzu.edu.cn   
作者简介:  康天蓓,博士,沈阳建筑大学土木工程学院副教授、硕士研究生导师。长期从事再生混凝土材料与耐久性、建筑固废资源化综合利用等研究。
引用本文:    
康天蓓, 梁玉, 梁意博, 王凤池, 周静海. 基于多机器学习模型的再生混凝土抗盐冻性能预测[J]. 材料导报, 2025, 39(19): 24100032-11.
KANG Tianbei, LIANG Yu, LIANG Yibo, WANG Fengchi, ZHOU Jinghai. Prediction of Salt-Freeze Resistance of Recycled Aggregate Concrete Based on Multiple Machine Learning Models. Materials Reports, 2025, 39(19): 24100032-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100032  或          https://www.mater-rep.com/CN/Y2025/V39/I19/24100032
1 Ma Z, Tang Q, Yang D, et al. Advances in Civil Engineering, 2019, 2019(1), 4073130.
2 Wu H, Zuo J, Zillante G, et al. Journal of Cleaner Production, 2019, 240, 118163.
3 Su T, Wu J, Yang G, et al. Construction and Building Materials, 2019, 226, 673.
4 Wu J, Jing X, Wang Z. Construction and Building Materials, 2017, 134, 210.
5 Liu L. Study on mechanical properties concrete and microstructure of recycled under salt-freeze cycle. Master's Thesis, Inner Mongolia University of Science & Technology, China, 2021 (in Chinese).
刘路. 盐冻循环作用下再生混凝土力学性能与微观结构研究. 硕士学位论文, 内蒙古科技大学, 2021.
6 Yin Z G, Dong S J, Feng J. Science Technology and Engineering, 2019, 19(15), 303 (in Chinese).
尹志刚, 董思健, 冯隽. 科学技术与工程, 2019, 19(15), 303.
7 Wang C X, Guo L, Cao F B. Bulletin of the Chinese Ceramic Society, 2018, 37(1), 10 (in Chinese).
王晨霞, 郭磊, 曹芙波. 硅酸盐通报, 2018, 37(1), 10.
8 Wu X G, Wang L, Chen H Y, et al. Materials Reports, 2022, 36(17), 115 (in Chinese).
吴贤国, 王雷, 陈虹宇, 等. 材料导报, 2022, 36(17), 115.
9 Mozumder R A, Roy B, Laskar A I. Arabian Journal for Science & Engineering, 2017, 42(3), 1129.
10 Zhang C, Ji J, Gui Y, et al. Geomechanics and Engineering, 2016, 11(3), 361.
11 Bilgehan M, Turgut P. Computer and Concrete, 2010, 7(7), 271.
12 Wang P H, Qiao H X, Feng Q, et al. Journal of Building Materials, 2024, 27(3), 190 (in Chinese).
王鹏辉, 乔宏霞, 冯琼, 等. 建筑材料学报, 2024, 27(3), 190.
13 Zhang J F, Huang Y M, Wang Y H, et al. Construction and Building Materials, 2020, 253, 119208.
14 Fu Z, Mo J. International Journal of Advanced Manufacturing Technology, 2011, 53, 473.
15 Xiao Q. Construction and Building Materials, 2022, 353, 129120.
16 Ma Z. Construction and Building Materials, 2020, 237, 117648.
17 Luo F. Experimental study on mechanical properties of recycled concrete and its bond-slip properties with steel bars under salt freeze. Master's Thesis, Inner Mongolia University of Science & Technology, China, 2021 (in Chinese).
罗菲. 盐冻作用下再生混凝土力学性能及与钢筋黏结-滑移性能研究. 硕士学位论文, 内蒙古科技大学, 2021.
18 Liu J. Study on frost resistance and bonding performance of recycled concrete under salt freezing. Master's Thesis, Inner Mongolia University of Science & Technology, China, 2023 (in Chinese).
刘军. 盐冻作用下再生混凝土抗冻性能与钢筋粘结性能研究. 硕士学位论文, 内蒙古科技大学, 2023.
19 Yu Z H. Study on the damage degradation and mass transfer recycled concrete subjected to loading and salt freezing-thaw cycles. Master's Thesis, Qingdao University of Technology, China, 2023 (in Chinese).
于子浩. 持压荷载与盐冻作用下再生混凝土劣化与介质传输性能研究. 硕士学位论文, 青岛理工大学, 2023.
20 Guo K, Tong Z, Zhang S F, et al. Journal of Building Materials, 2023, 26(11), 1183 (in Chinese).
郭凯, 佟舟, 张树峰, 等. 建筑材料学报, 2023, 26(11), 1183.
21 Meng D, Wu X M, Quan H Z, et al. Construction and Building Materials, 2021, 281, 122616.
22 Wang W, Wang Y, Chen Q, et al. Construction and Building Materials, 2022, 329, 127197.
23 Liu J, Li Y, Hong D D, et al. Advanced Materials Research, 2012, 418, 406.
24 Yue G B, Li Q Y, Luo J L, et al. Materials Science Forum, 2017, 898, 2046.
25 Deng X, Xue L, Wang R, et al. Archives of Civil Engineering, 2019, 65(4), 63.
26 Xue L Y. Experimental study on frost resistance and durability of air entrained recycled concrete. Master's Thesis, Xi'an Technological University, China, 2020 (in Chinese).
薛丽媛. 引气再生混凝土的抗冻耐久性试验研究. 硕士学位论文, 西安工业大学, 2020.
27 Xiao Q, Liu X, Qiu J, et al. Advances in Materials Science and Engineering, 2020, 2020(1), 1620914.
28 Jin L, Dong T, Fan T, et al. Materials Today Communications, 2022, 32, 104137.
29 Wang Q H, Dai R H, Wang S Q. Journal of Shenyang Jianzhu University(Natural Science Edition), 2023, 39(6), 1050 (in Chinese).
王庆贺, 戴蕊宏, 王仕奇, 等. 沈阳建筑大学学报(自然科学版), 2023, 39(6), 1050.
30 Luo G B, Hong C Y, Cheng Z L, et al. Concrete, 2023(3), 37 (in Chinese).
罗广彬, 洪成雨, 程志良, 等. 混凝土, 2023(3), 37.
31 Chen Q, Ma R, Jiang Z W, et al. Journal of Building Materials, 2020, 23(1), 176 (in Chinese).
陈庆, 马瑞, 蒋正武, 等. 建筑材料学报, 2020, 23(1), 176.
32 Han I J, Yuan T F, Lee J Y, et al. Materials. 2019, 12(22), 3708.
33 Li G Z, Wang S T. Computer Engineering and Applications, 2017, 53(17), 143 (in Chinese).
李光早, 王士同. 计算机工程与应用, 2017, 53(17), 143.
34 Golafshani E M, Behnood A. Journal of Cleaner Production, 2018, 176, 1163.
35 Zhou Q, Zhou J, Zhao W Y, et al. Earthquake Engineering and Engineering Dynamics, 2023, 43(5), 130 (in Chinese).
周强, 周杰, 赵文洋, 等. 地震工程与工程振动, 2023, 43(5), 130.
36 Han Y, Lyu Y, Pan Y H, et al. Journal of Hebei United university natural sclence edition (Natural Science Edition), 2017, 39(2), 104 (in Chinese).
韩阳, 吕由, 潘宇航, 等. 华北理工大学学报(自然科学版), 2017, 39(2), 104.
37 Zhang X, Dai C, Li W, et al. Frontiers in Earth Science, 2023, 11, 1112105.
38 Li T J, Hu Y, Liu Q, et al. Water Resources and Power, 2021, 39(2), 119 (in Chinese).
李铁军, 胡毅, 刘茜, 等. 水电能源科学, 2021, 39(2), 119.
39 Liu Q, Iqbal M F, Yang J, et al. Construction and Building Materials, 2021, 268, 121082.
[1] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[2] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[3] 海然, 崔力, 翟胜田, 刘俊霞, 惠存, 王超圣. 基于文献聚类分析的再生混凝土抗压强度及耐久性最新研究进展[J]. 材料导报, 2025, 39(17): 24050154-9.
[4] 许开成, 王文鹏, 张立卿. 不同来源粗骨料混合再生混凝土抗压强度及其预测模型建立[J]. 材料导报, 2025, 39(12): 23110068-9.
[5] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[6] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[7] 陈宇良, 王双翼, 李洪, 李培泽. 复杂应力状态下玻璃纤维再生混凝土损伤演变及应力-应变本构关系研究[J]. 材料导报, 2024, 38(24): 23080024-9.
[8] 王家滨, 张凯峰, 郑康华, 符梦涛. 完全浸泡再生混凝土Mg2+-SO42--Cl-侵蚀耐久性损伤规律与机理[J]. 材料导报, 2024, 38(18): 23050184-11.
[9] 郑建岚, 王晓敏, 张建全. 含氯再生骨料混凝土抗氯离子渗透性能的研究[J]. 材料导报, 2024, 38(18): 23050208-6.
[10] 王家滨, 车志豪, 侯泽宇, 范一杰, 牛荻涛. 部分浸泡再生混凝土复合盐侵蚀微观特征与损伤演化[J]. 材料导报, 2024, 38(16): 22070227-12.
[11] 关博文, 张硕文, 吴佳育, 王发平, 陈晓堃. 基于残余砂浆附着特征的再生混凝土硫酸盐传输模型[J]. 材料导报, 2024, 38(15): 23040046-8.
[12] 齐云鹏, 王秋生, 秦力, 商效瑀. MU10再生混凝土承重砌块力学性能与抗冻性试验研究[J]. 材料导报, 2024, 38(11): 22070011-7.
[13] 王家滨, 范一杰, 牛荻涛, 王宇, 张凯峰. 部分浸泡再生混凝土Mg2+-SO42--Cl-复合盐侵蚀耐久性损伤特征与机制[J]. 材料导报, 2024, 38(1): 22060026-13.
[14] 李北星, 陈鹏博, 殷实, 易浩. 附加用水量对再生砂混凝土工作性和力学性能的影响[J]. 材料导报, 2024, 38(1): 22070217-7.
[15] 冯春花, 崔卜文, 郭晖, 张文艳, 朱建平. 水泥浆-碳化协同增强再生混凝土骨料研究[J]. 材料导报, 2023, 37(21): 22060098-5.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed