Please wait a minute...
材料导报  2025, Vol. 39 Issue (23): 24110167-6    https://doi.org/10.11896/cldb.24110167
  金属与金属基复合材料 |
超超临界奥氏体耐热钢在循环载荷下的高温变形特性
周彤彤, 吕德超, 曹铁山, 程从前, 赵杰*
大连理工大学材料科学与工程学院,辽宁 大连 116024
High Temperature Deformation Characteristics of an Ultra-supercriticial Austenitic Heat-resistant Steel Under Cyclic Loading
ZHOU Tongtong, LYU Dechao, CAO Tieshan, CHENG Congqian, ZHAO Jie*
School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
下载:  全 文 ( PDF ) ( 13380KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了超超临界电站用HR3C奥氏体耐热钢在温度948~998 K、平均应力200~240 MPa、应力幅值0~130 MPa下的高温变形特性,揭示了高温循环载荷下HR3C钢的变形机制及断裂行为。结果表明:随温度、平均应力及应力幅值的升高,HR3C钢在循环载荷下的最小应变速率逐渐增大,寿命逐渐降低。根据最小应变速率特征分析得出,在948、973和998 K下,表观应力指数分别为3.30、4.47、5.03,表观激活能介于460~520 kJ/mol之间;外推法估算得到不同温度下的门槛应力分别为89、73和23 MPa。通过引入门槛应力确定真实的应力指数为3以及真实的激活能范围在275~315 kJ/mol,并推测HR3C钢在循环载荷作用下的变形机制是由晶格扩散协助受位错滑移控制的蠕变变形。同时利用累计损伤应变εd修正M-G关系以实现寿命预测。无论是恒载荷还是循环载荷作用下,HR3C钢是以沿晶断裂为主的韧性断裂;而在循环载荷作用下,断口形貌中出现少量的穿晶裂纹。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周彤彤
吕德超
曹铁山
程从前
赵杰
关键词:  循环加载  门槛应力  变形机制  断裂特征    
Abstract: The high temperature deformation characteristics of HR3C austenitic heat-resistant steel in ultra-supercritical power plant boiler were studied under the temperature range of 948—998 K, mean stress of 200—240 MPa and stress amplitude of 0—130 MPa. The deformation mechanism and fracture behavior of HR3C steel under high-temperature cyclic loading were elucidated. The results show that with the increasing of temperature, mean stress and stress amplitude, the minimum strain rate of HR3C steel under cyclic loading increases, and the life gradually decreases. According to the minimum strain rate characteristics, the apparent stress exponents of the sample under cyclic loading are 3.30, 4.47, 5.03, and the apparent activation energy is 460—520 kJ/mol at 948, 973 and 998 K. By extrapolation method, the threshold stresses at different temperatures was estimated to be 89, 73 and 23 MPa, respectively. By introducing threshold stresses, the true stress exponent is 3 and the true activation energy is 275—315 kJ/mol. The deformation mechanism of HR3C steel under cyclic loading is the creep deformation controlled by dislocation slip assisted by lattice diffusion. At the same time, the cumulative damage strain εd was used to modify the M-G relationship to achieve life prediction. Under constant load and cyclic load, the fracture mode of HR3C steel is ductile fracture dominated by intergranular fracture. There are a few transcrystalline cracks in the fracture morphology under cyclic loading.
Key words:  cyclic loading    threshold stress    deformation mechanism    fracture characteristic
出版日期:  2025-12-10      发布日期:  2025-12-03
ZTFLH:  TG142.73  
基金资助: 国家自然科学基金(U1610256;51901035)
通讯作者:  *赵杰,大连理工大学材料科学与工程学院教授、博士研究生导师。主要研究方向为金属材料蠕变、组织演化、材料的损伤及寿命预测。jiezhao@dlut.edu.cn   
作者简介:  周彤彤,大连理工大学材料科学与工程学院博士研究生,在赵杰教授的指导下进行研究。目前主要研究领域为奥氏体耐热钢的蠕变特征。
引用本文:    
周彤彤, 吕德超, 曹铁山, 程从前, 赵杰. 超超临界奥氏体耐热钢在循环载荷下的高温变形特性[J]. 材料导报, 2025, 39(23): 24110167-6.
ZHOU Tongtong, LYU Dechao, CAO Tieshan, CHENG Congqian, ZHAO Jie. High Temperature Deformation Characteristics of an Ultra-supercriticial Austenitic Heat-resistant Steel Under Cyclic Loading. Materials Reports, 2025, 39(23): 24110167-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110167  或          https://www.mater-rep.com/CN/Y2025/V39/I23/24110167
1 Li Q. Journal of Coal Science & Technology, 2021, 8, 1197.
2 Luo J S. Boiler Technology, 2023, 54(6), 8 (in Chinese).
罗建松. 锅炉技术, 2023, 54(6), 8.
3 Wang J, Duan L Q, Yang M. Journal of Mechanical Engineering, 2022, 58(22), 416 (in Chinese).
王婧, 段立强, 杨名. 机械工程学报, 2022, 58(22), 416.
4 Yu H Y, Dong J X, Xie X S. World Iron and Steel, 2010, 10(2), 42 (in Chinese).
于鸿垚, 董建新, 谢锡善. 世界钢铁, 2010, 10(2), 42.
5 Feng F, Wang M L, Li Z H, et al. Materials Reports, 2021, 35(9), 9186 (in Chinese).
封帆, 王美玲, 李振华, 等. 材料导报, 2021, 35(9), 9186.
6 Xu H, Li Y P, Fang X D, et al. Hot Working Technology, 2017, 3(6), 107 (in Chinese).
许航, 李玉平, 方旭东, 等. 热加工工艺, 2017, 3(6), 107.
7 Wang X, Wan X, Liu Y, et al. Fatigue & Fracture of Engineering Materials & Structures, 2023, 46, 2017.
8 Chen X H, Liu S J, Tian Y S, et al. European Journal of Mechanics-A/Solids, 2023, 97, 104855.
9 He J J, Sandström R, Vujic S. Procedia Structural Integrity, 2016, 2, 871.
10 Sarkar A, Nagesha A, Parameswaran P, et al. Philosophical Magazine, 2015, 95, 3950.
11 Li H Z, Jing H Y, Xu L Y, et al. International Journal of Fatigue, 2019, 119, 20.
12 Fang X D, Wang Y, Fan G W, et al. Journal of Materials Engineering, 2017, 45(6), 112 (in Chinese).
方旭东, 王岩, 范光伟, 等. 材料工程, 2017, 45(6), 112.
13 Wang Q B, Xin R S, Wang Z C, et al. Journal of Manufacturing Processes, 2022, 82, 792.
14 Xu S K, Wang K J, Xu C, et al. Mechanical Research Application, 2024, 37(5), 182 (in Chinese).
许少坤, 王克俭, 徐驰, 等. 机械研究与应用, 2024, 37(5), 182.
15 Sui Y H, Zhang X Z, Xu D F. Mechanics of Solids, 2021, 56, 761.
16 Yaguchi M. Materials at High Temperatures, 2024, 41, 274.
17 Yadav H K, Ballal A R, Thawre M M, et al. Materials Research Express, 2020, 7, 016580.
18 Zhang Y, Jing H Y, Xu L Y, et al. Materials Science and Engineering:A, 2017, 686, 102.
19 Park D B, Hong S M, Lee K H, et al. Materials Characterization, 2014, 93, 52.
20 Meng L J, Xing H, Pang G W, et al. Atom Energy Science Technology, 2009, 43(6), 509 (in Chinese).
孟丽君, 邢辉, 庞淦文, 等. 原子能科学技术, 2009, 43(6), 509.
21 McQueen H J, Ryan N D. Materials Science and Engineering:A, 2002, 322, 43.
22 Meng L J, Sun J, Xing H. Journal of Nuclear Materials, 2012, 427, 116.
23 Reyes-Calderón F, Mejía I, Cabrera J M. Materials Science and Enginee-ring:A, 2013, 562, 46.
24 Wang S, Luo J R, Hou L G, et al. Materials & Design, 2017, 113, 27.
25 Sakthivel T, Selvi S P, Laha K. Materials Science and Engineering:A, 2015, 640, 61.
26 Nhon Q V, Christian H L, Michael J S, et al. Acta Materialia, 2014, 71, 89.
27 Zhang X Z, Wu X J, Liu R, et al. Materials Science and Engineering:A, 2017, 689, 345.
28 Spigarelli S. International Journal Pressure Vessels and Piping, 2013, 101, 64.
29 Lyu D C, Cao T S, Zhou T T, et al. Metallurgical and Materials Tran-sactions A, 2022, 53, 1738.
30 Zhang J S. Material strength science, Harbin Institute of Technology Press, China, 2004, pp. 131 (in Chinese).
张俊善. 材料强度学, 哈尔滨工业大学出版社, 2004, pp. 131.
31 Li H Z, Jing H Y, Xu L Y, et al. International Journal of Plasticity, 2019, 116, 91.
32 Wang R, Duan M, Zhang J, et al. Journal of Materials Engineering and Performance, 2021, 30, 4552.
[1] 柯松, 陈卓坤, 艾诚, 李尧, 虢婷, 孙志平. 非晶合金薄膜的复合强韧化研究进展[J]. 材料导报, 2024, 38(5): 22090022-9.
[2] 周玉浩, 连鸣, 王颜凯, 苏明周. 7×19构型NiTi形状记忆合金绞线超弹性试验研究[J]. 材料导报, 2024, 38(21): 23070029-10.
[3] 付璐, 赵晏, 任帅, 孙智妍, 赵英利, 张中武. 横纵轧对低合金高强度钢夹杂物变形行为和低温韧性的影响[J]. 材料导报, 2024, 38(17): 23020218-6.
[4] 张子瑜, 刘艳芳, 李玉胜, 曹阳. 高压扭转变形诱导的非均匀微观结构演化[J]. 材料导报, 2023, 37(23): 22050212-10.
[5] 王庆娟, 党雪, 杜忠泽, 王钦仁, 何泽恩, 齐泽江. B92SiQL钢的高温流变行为及变形机制研究[J]. 材料导报, 2023, 37(21): 22040403-8.
[6] 孙建, 黄贞益, 李景辉, 王萍, 吴旭明. 基于加工硬化率的新型轻质钢动态再结晶临界条件及变形机制研究[J]. 材料导报, 2022, 36(19): 21050251-9.
[7] 杨家坤, 包翔云, 张金钰, 刘刚, 孙军. 亚稳β钛合金的设计方法及室温变形机制的研究进展[J]. 材料导报, 2021, 35(19): 19170-19180.
[8] 王睿鑫, 唐宇, 李顺, 白书欣. 高熵合金动态载荷下变形机制的研究进展[J]. 材料导报, 2021, 35(17): 17001-17009.
[9] 屈鹏飞, 杨文超, 岳全召, 曹凯莉, 刘林. 镍基高温合金微孪晶形成机制的研究进展[J]. 材料导报, 2019, 33(23): 3971-3978.
[10] 肖罡, 卜晓兵, 杨钦文, 杨旭静, 冯江华. 高锰Hadfield钢单向拉伸变形及断裂行为研究[J]. 材料导报, 2019, 33(22): 3811-3814.
[11] 刘春泉,彭其春,薛正良,吴腾. Fe-Mn-Al-C系列低密度高强钢的研究现状[J]. 材料导报, 2019, 33(15): 2572-2581.
[12] 唐昌平, 左国良, 刘文辉, 朱美韵, 李志云, 李权, 刘筱, 卢立伟. 挤压-T5态Mg-8Gd-4Y-Nd-Zr合金的动态冲击行为[J]. 《材料导报》期刊社, 2018, 32(14): 2437-2441.
[13] 曹秀中, 赵冰, 韩秀全, 侯红亮, 曲海涛. 连续SiC纤维增强钛基复合材料横向高温变形机理研究*[J]. 《材料导报》期刊社, 2017, 31(8): 88-93.
[14] 魏力民, 杨权, 程义, 谭舒平. Ni-25Cr-20Co合金时效组织结构及性能研究[J]. 《材料导报》期刊社, 2017, 31(16): 107-111.
[15] 程强, 何晓聪, 邢保英, 张越. 铝锂合金T型自冲铆接头疲劳特性及失效机理*[J]. 《材料导报》期刊社, 2017, 31(12): 84-88.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed