Please wait a minute...
材料导报  2025, Vol. 39 Issue (7): 24010045-7    https://doi.org/10.11896/cldb.24010045
  无机非金属及其复合材料 |
光伏单晶硅片冲洗过程中应力分布的研究
李涛1, 吕国强2, 李遇贤1,*, 钱益超1, 张杰1
1 昆明理工大学机电工程学院, 昆明 650500
2 昆明理工大学冶金与能源工程学院, 昆明 650093
Study on Stress Distribution of Photovoltaic Monocrystalline Silicon Sheet During Washing
LI Tao1, LYU Guoqiang2, LI Yuxian1,*, QIAN Yichao1, ZHANG Jie1
1 Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
2 School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 12421KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在光伏单晶硅片冲洗过程中,产生的最大应力可能导致硅片损伤,硅片上应力的分布及硅片上最大应力位置的确定对于降低硅片的损伤程度有重要意义。首先基于矩形板的Levy解模型,计算冲洗过程中不同尺寸硅片上的挠度和应力值;然后,运用ABAQUS有限元软件对硅片冲洗过程中产生的应力进行仿真。结果表明,运用矩形板Levy解模型计算时,特定比值下,当硅片的长宽比b/a=2、 1、 0.5时,最大应力值出现在自由边上(y=b)或固支边上(y=0)。当硅片宽度a固定、长度b逐渐增加时,在固支边上长宽比b/a=0.5时应力值最大,在自由边上长宽比b/a=0.9时应力值最大;当硅片的长宽比b/a=0.1~1.5时,硅片的最大应力分布在固支边上;当硅片的长宽比b/a=1.5~2时,硅片的最大应力分布在自由边上。通过最大挠度确定最大应力位置,虽然能减少大量计算,但是不够全面和准确。运用ABAQUS有限元分析得出的结果与矩形板Levy解模型计算得出的应力分布规律一致,但是应力值存在一定的误差。将矩形板Levy解模型得出的结果与莫尔理论结合,推导出硅片上冲洗压力与硅片厚度的关系公式。利用该公式,当硅片厚度确定时,能计算出硅片上承受的最大冲洗压力;当冲洗压力确定时,能得出硅片冲洗时不被破坏的最小厚度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李涛
吕国强
李遇贤
钱益超
张杰
关键词:  光伏单晶硅  矩形板Levy解  单晶硅片冲洗  应力    
Abstract: In the process of washing photovoltaic monocrystalline silicon wafer, the maximum stress may cause damage to the silicon wafer. The determination of the distribution of the stress on the silicon wafer and the maximum stress position on the silicon wafer are of great significance to reduce the damage of the silicon wafer. In this work, based on the Levy solution model of the short-shaped plate, the deflection and stress values of the silicon wafers of different sizes are calculated. Then, ABAQUS finite element software is used to simulate the stress generated in the process of silicon wafer washing. The results show that the maximum stress value appears on the free edge (y=b) or the fixed edge (y=0) when the wafer's aspect ratio b/a=2, 1 and 0.5 are calculated by using the Levy solution model of the short-shaped plate. When the wafer width a is fixed and the length b is gradually increased, the stress value is maximum when the aspect ratio b/a=0.5 on the fixed side, and the stress value is maximum when the aspect ratio b/a=0.9 on the free side. When the aspect ratio of the silicon wafer b/a=0.1—1.5, the maximum stress of the silicon wafer is distributed on the solid support edge, and when the aspect ratio of the silicon wafer b/a=1.5—2, the maximum stress of the silicon wafer is distributed on the free edge. The determination of the maximum stress position by the maximum deflection can reduce a lot of calculation, but it is not comprehensive and accurate. The results obtained by ABQUS finite element analysis are consistent with the stress distribution calculated by Levy solution model of rectangular plate, but there are some errors in the stress value. By combining the results of Levy solution model of rectangular plate with Mohr theory, the relation formula between the washing pressure and the thickness of silicon wafer is derived. When the thickness of the silicon wafer is determined, the maximum washing pressure that can be borne on the silicon wafer can be calculated; conversely, when the washing pressure is determined, the minimum thickness that will not be destroyed when the silicon wafer is washed can be obtained.
Key words:  photovoltaic monocrystalline silicon    the Levy's solution for a rectangular plate    monocrystalline silicon sheet cleaning    stress
出版日期:  2025-04-10      发布日期:  2025-04-10
ZTFLH:  TH145  
基金资助: 国家自然科学基金(22268027)
通讯作者:  *李遇贤,博士,昆明理工大学机电工程学院副教授、硕士研究生导师。主要研究方向为先进制造技术、单晶硅切片加工技术等。2429126569@qq.com   
作者简介:  李涛,昆明理工大学机电工程学院硕士研究生,在李遇贤老师的指导下进行研究。目前主要研究方向为单晶硅线锯切片加工。
引用本文:    
李涛, 吕国强, 李遇贤, 钱益超, 张杰. 光伏单晶硅片冲洗过程中应力分布的研究[J]. 材料导报, 2025, 39(7): 24010045-7.
LI Tao, LYU Guoqiang, LI Yuxian, QIAN Yichao, ZHANG Jie. Study on Stress Distribution of Photovoltaic Monocrystalline Silicon Sheet During Washing. Materials Reports, 2025, 39(7): 24010045-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010045  或          https://www.mater-rep.com/CN/Y2025/V39/I7/24010045
1 Liu T Y, Ge P Q, Bi W B, et al. Solar Energy, 2017, 157, 427.
2 Li P H, GuoX G, Yuan S, et al. Applied Surface Science, 2021, 554, 149668.
3 Ge Peiqi, Chen Zibin, Wang Peizhi. Diamond and Abrasive Tools Engineering, 2020, 40(4), 12(in Chinese).
葛培琪, 陈自彬, 王沛志. 金刚石与磨料磨具工程, 2020, 40(4), 12.
4 Liu Tengyun, Ge Peiqi, Bi Wenbo, et al. Science in Semiconductor Processing, 2017, 57, 147.
5 Huang S X. Study on the influence of surface quality of smooth crystal silicon on its photogenic volt effect. Master's Thesis, The Huaqiao University, China, 2022(in Chinese).
黄仕相. 光面晶体硅表面质量对其光生伏特效应的影响研究. 硕士学位论文, 华侨大学, 2022.
6 Gao Yufei, Ge Peiqi, Li Shaojie. Journal of Artificial Crystals, 2009, 38(2), 372(in Chinese).
高玉飞, 葛培琪, 李绍杰. 人工晶体学报, 2009, 38(2), 372.
7 Costa E C, Xavier F A, Knoblauch R, et al. Solar Energy, 2020, 207, 640.
8 Liu Tengyun, Ge Peiqi, Bi Wenbo, et al. Materials Science in Semiconductor Processing, 2017, 71, 133.
9 Li Zongping, Cheng Dameng. Journal of artificial crystal, 2023, 52(8), 1378(in Chinese).
李宗平, 程大猛. 人工晶体学报, 2023, 52(8), 1378.
10 Li Z Q. Study on the influence of crystal anisotropy on the crystal shape deviation of diamond wire saw slicing. Ph. D. Thesis, Shandong University, China, 2021(in Chinese).
李宗强. 晶体各向异性对金刚石线锯切片加工的晶片面形偏差影响研究. 博士学位论文, 山东大学, 2021.
11 Tian Hailan, Han Tao, Yan Shaohua, et al. Manufacturing Technology & Machine Tool, 2023(3), 24(in Chinese).
田海兰, 韩涛, 闫少华, 等. 制造技术与机床, 2023(3), 24.
12 Wang Yan, Huang Shengju, Qian Zhaofeng, et al. Engineering Fracture Mechanics, 2023, 278, 109029.
13 Song Shuang, Gou Xianfang, Wang Liting, et al. Solar Energy, 2023(6), 50(in Chinese).
宋爽, 勾宪芳, 王丽婷, 等. 太阳能, 2023(6), 50.
14 Chen Yuanxin, Ma Yingying, Chen Yunqing, et al. China Integrated Circuits, 2023, 32(5), 80(in Chinese).
陈远新, 马英英, 陈芸清, 等. 中国集成电路, 2023, 32(5), 80.
15 Zhang Qian. Electronic Testing, 2015(13), 151(in Chinese).
张倩. 电子测试, 2015(13), 151.
16 Fan Hongna, Yang Hongxing. Special Equipment for Electronic Industry, 2016, 45(8), 27(in Chinese).
范红娜, 杨洪星. 电子工业专用设备, 2016, 45(8), 27.
17 Wang Lingyu. Special Equipment for Electronic Industry, 2018, 47(2), 27(in Chinese).
王玲玉. 电子工业专用设备, 2018, 47(2), 27.
18 Lei Denghui, Zhang Ting, Dong Peng. Science and Technology Wind, 2015(12), 120(in Chinese).
雷登辉, 张婷, 董鹏. 科技风, 2015(12), 120.
19 Zhu Xiujie, Zheng Jian, Xiong Chao, et al. Journal of Composite Materials, 2022, 39(1), 399(in Chinese).
朱秀杰, 郑坚, 熊超, 等. 复合材料学报, 2022, 39(1), 399.
20 Li Zhuangfei, KouZiqi, Liu Hai, et al. Journal of Qingdao University of Technology, 2021, 42(3), 28(in Chinese).
李壮飞, 寇子琦, 刘海, 等. 青岛理工大学学报, 2021, 42(3), 28.
21 Ugural A C. Fan Qinshan Translation. Plate and shell stress, China Building and Architecture Press, China, 1986, pp. 10(in Chinese).
Ugural A C, 范钦珊译. 板壳应力, 中国建筑工业出版社, 1986, pp. 10.
22 Kang Renke. Diamond and Abrasives Engineering, 2020, 40(4), 1(in Chinese).
康仁科. 金刚石与磨料磨具工程, 2020, 40(4), 1.
23 Zhao Qi. Study on scratch removal and cleaning technology of CMP machining surface of monocrystalline silicon components. Master's Thesis, Harbin industrial university, China, 2022(in Chinese).
赵琦. 单晶硅元件CMP加工表面划痕去除和清洗工艺研究. 硕士学位论文, 哈尔滨工业大学, 2022.
24 Mi Haizhen, Hu Yanni, Li Chunyan. Elastic Mechanics, Chongqing University Press, China, 2001(in Chinese).
米海珍, 胡燕妮, 李春燕. 弹性力学, 重庆大学出版社, 2001.
25 Huang Xiaoqing, Lu Lifang, He Tinghui. Mechanics of materials, South China University of Technology Press, China, 2011(in Chinese).
黄小清, 陆丽芳, 何庭蕙. 材料力学, 华南理工大学出版社, 2011.
[1] 姜彦杰, 刘浩天, 刘海峰, 车佳玲, 杨维武. 硫酸盐冻融后沙漠砂混凝土单轴受压力学性能试验研究[J]. 材料导报, 2025, 39(7): 23110222-11.
[2] 杜刚, 李亮, 王子晨, 吴俊, 杜修力. 碳纤维混凝土高温冷却后动态压缩性能试验研究[J]. 材料导报, 2025, 39(6): 24010268-6.
[3] 张昌青, 马东东, 谷怀壮, 王栋, 刘恩荣, 张鹏省. 1060-H24纯铝无轴肩微型搅拌摩擦焊的数值模拟分析[J]. 材料导报, 2025, 39(5): 24020082-6.
[4] 姚未怡, 卜恒勇. 轧制态7050铝合金双道次热变形微观组织演变[J]. 材料导报, 2025, 39(4): 23120032-8.
[5] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[6] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[7] 孙涛, 王辉, 张蕾, 刘晓英, 赵宏刚, 蒋伟, 成鑫磊, 何小涌. 基于折减因子的奥氏体不锈钢螺栓高温应力-应变模型[J]. 材料导报, 2024, 38(5): 23080049-9.
[8] 苏秉尧, 王斌, 侯林伟, 王恒, 赵建伟, 贺辛亥, 袁亚蓉. 柔性碳/三聚氰胺复合泡沫的电磁屏蔽与传感特性[J]. 材料导报, 2024, 38(5): 22070159-7.
[9] 林忠亮, 白清顺, 唐伟, 吴保全, 刘烨欣, 兰洋. 压合衬套冷挤压强化的残余应力的数值模拟[J]. 材料导报, 2024, 38(3): 22070260-8.
[10] 陈宇良, 王双翼, 李洪, 李培泽. 复杂应力状态下玻璃纤维再生混凝土损伤演变及应力-应变本构关系研究[J]. 材料导报, 2024, 38(24): 23080024-9.
[11] 严鹏志, 范鹏贤, 王宇, 邢文政. 极端不利环境下氧化铝薄壁空心球粒抗冲击吸波性能试验研究[J]. 材料导报, 2024, 38(23): 23080113-6.
[12] 何东青, 冯子涵, 郑文文, 李文生, 尚伦霖. Cr3C2-NiCr/AlCrN复合涂层高温摩擦学行为研究[J]. 材料导报, 2024, 38(21): 23060112-7.
[13] 崔涛涛, 宁宝宽, 郜殿伟, 夏旭东. 混杂纤维高强轻骨料混凝土单轴受压试验研究[J]. 材料导报, 2024, 38(2): 22040204-6.
[14] 秦盛伟, 邸黎寅, 王连翔, 张承昊. 渗碳工艺对18CrNiMo7-6合金钢缺口件疲劳性能的影响[J]. 材料导报, 2024, 38(2): 22100180-7.
[15] 郭维超, 赵庆新, 邱永祥, 石雨轩, 王帅. 碱渣-电石渣激发混凝土的基本力学性能与应力-应变关系[J]. 材料导报, 2024, 38(17): 22070247-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed