Please wait a minute...
材料导报  2025, Vol. 39 Issue (7): 24010128-6    https://doi.org/10.11896/cldb.24010128
  高分子与聚合物基复合材料 |
基于丝网印刷制备的导电水凝胶基可拉伸应变传感器
朱文虎1,†, 孙奉琳1,†, 王蓉1, JOO SangWoo4, 丛晨浩2,3,*, 李欣琳1,*
1 青岛大学机电工程学院, 山东 青岛 266071
2 建国大学化学工程学院, 首尔 05029
3 青柔(青岛)智能科技有限公司, 山东 青岛 266071
4 岭南大学机械工程学院, 庆山 38541
Screen-printed Conductive Hydrogel-based Stretchable Strain Sensors
ZHU Wenhu1,†, SUN Fenglin1,†, WANG Rong1, JOO SangWoo4, CONG Chenhao2,3,*, LI Xinlin1,*
1 College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, Shandong, China
2 School of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
3 Qingrou (Qingdao) Intelligent Technology Co.,Ltd., Qingdao 266071, Shandong, China
4 School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
下载:  全 文 ( PDF ) ( 13482KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着大健康领域的快速发展,柔性电极作为人体可穿戴器件上最基础的功能单元而备受关注。然而大多数电极仍具有拉伸程度有限与导电性较差的特性,使其实际应用受限。本工作使用聚乙烯醇(PVA)为导电水凝胶基体,聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)为导电网络,水为溶剂,单宁酸(TA)为交联剂,制备了一种具备多重氢键体系、适用于丝网印刷的水凝胶型导电油墨。同时,使用冰晶作为模板并采用冻融循环技术构建了复杂的物理网络结构。以表面经十二烷基硫酸钠(SDS)亲水修饰的聚二甲基硅氧烷(PDMS)为基底,利用丝网印刷技术制备了可拉伸电极。最终得到的TA-PVA/PEDOT:PSS水凝胶电极具有480%的最大拉伸应变。此外,构建该多重氢键体系的思路有可能扩展应用在其他自愈合导电水凝胶电极上。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱文虎
孙奉琳
王蓉
JOO SangWoo
丛晨浩
李欣琳
关键词:  导电水凝胶  丝网印刷  应变传感器  冻融循环法    
Abstract: With the rapid development of the field of great health, flexible electrodes have attracted much attention as the most basic functional unit on human wearable devices. However, most of the electrodes still have the characteristics of limited stretching degree and poor conductivity, which restrains their practical application. In this paper, a hydrogel-based and multi-hydrogen-bond-containing conductive ink for screen printing technology was prepared using polyvinyl alcohol (PVA) as the conductive hydrogel matrix, poly(3, 4-ethylenedioxythiophene)-poly(styrene sulfonic acid) (PEDOT:PSS) as the conductive network, water as the solvent, and tannic acid (TA) as the cross-linking agent. And a complex physical network structure was subsequently constructed using ice crystals as the templates and freeze-thaw cycling technique. Further the stretchable electrode was prepared through screen printing technique using the polydimethylsiloxane (PDMS) substrate whose surface was hydrophilically pre-modified by sodium dodecyl sulfate (SDS). The eventually produced TA-PVA/PEDOT:PSS hydrogel electrode exhibited a ultimate tensile strain of 480%. In addition, the idea of constructing this multiple hydrogen bonding system has the potential to be extended for application to other self-healing conductive hydrogel electrodes.
Key words:  conductive hydrogel    screen printing    strain sensor    freeze-thaw cycle method
出版日期:  2025-04-10      发布日期:  2025-04-10
ZTFLH:  TB34  
基金资助: 山东省高校青年创新团队支持计划(2022KJ144)
通讯作者:  *丛晨浩congchenhao@outlook.com;
李欣琳,青岛大学机电工程学院特聘教授、硕士研究生导师。2020年岭南大学机械工程工业博士毕业。目前主要从事印刷电子制造、有机晶体管制备与分析、气体/生物传感器等方面的研究工作。xinlin0618@163.com   
作者简介:  朱文虎,2021年6月于青岛大学获得工学学士学位。现为青岛大学机电工程学院硕士研究生,在李欣琳教授的指导下进行研究。目前主要研究领域为印刷电子制造。孙奉琳,2020年6月于长春工业大学获得工学学士学位。现为青岛大学机电工程学院硕士研究生,在李欣琳教授的指导下进行研究。目前主要研究领域为印刷电子制造。
†共同第一作者
引用本文:    
朱文虎, 孙奉琳, 王蓉, JOO SangWoo, 丛晨浩, 李欣琳. 基于丝网印刷制备的导电水凝胶基可拉伸应变传感器[J]. 材料导报, 2025, 39(7): 24010128-6.
ZHU Wenhu, SUN Fenglin, WANG Rong, JOO SangWoo, CONG Chenhao, LI Xinlin. Screen-printed Conductive Hydrogel-based Stretchable Strain Sensors. Materials Reports, 2025, 39(7): 24010128-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010128  或          https://www.mater-rep.com/CN/Y2025/V39/I7/24010128
1 Tan C, Dong Z, Li Y, et al. Nature Communications, 2020, 11(1), 3530.
2 Shin J, Jeong B, Kim J, et al. Advanced Materials, 2020, 32(2), 1905527.
3 Zafar H, Channa A, Jeoti V, et al. Sensors, 2022, 22(2), 638.
4 Li M, Chen S, Fan B, et al. Advanced Functional Materials, 2020, 30(34), 2003214.
5 Park H, Song C, Jin S W, et al. Nano Energy, 2021, 83, 105837.
6 Xu J, Wang H, Ma T, et al. Carbon, 2020, 166, 316.
7 Wang Q, Liu J, Ran X, et al. Nano Research, 2022, 15, 170.
8 Wang G, Cong C, Zheng X, et al. Chemical Engineering Journal, 2023, 474, 145825.
9 Beedasy V, Smith P J. Materials, 2020, 13(3), 704.
10 Correia V, Caparros C, Casellas C, et al. Smart Materials and Structures, 2013, 22(10), 105028.
11 Thompson B, Yoon H S. IEEE Sensors Journal, 2013, 13(11), 4256.
12 Du F, Dong Z, Guan Y, et al. Analytical Chemistry, 2022, 94(4), 2189.
13 Won J, Mondal S, Park J, et al. Polymer Composites, 2020, 41(6), 2210.
14 Yang J, Cao Q, Tang X, et al. Journal of Materials Chemistry A, 2021, 9(35), 19649.
15 Kao H L, Cho C L, Chang L C, et al. Coatings, 2020, 10(8), 792.
16 Ke S H, Guo P W, Pang C Y, et al. Advanced Materials Technologies, 2020, 5(5), 1901097.
17 Wu Z X. Construction and applications of PEDOTs-based conducting polymer hydrogel electrochromic devices. Master's Thesis, Jiangxi Normal University of Science and Technology, China, 2023 (in Chinese).
吴之心. PEDOT类导电聚合物水凝胶电致变色器件的构筑及应用. 硕士学位论文, 江西科技师范大学, 2023.
18 Adelnia H, Ensandoost R, Moonshi S S, et al. European Polymer Journal, 2022, 164, 110974.
19 Rescignano N, Fortunati E, Montesano S, et al. Carbohydrate Polymers, 2014, 99, 47.
20 Nan N, DeVallance D B, Xie X, et al. Journal of Composite Materials, 2016, 50(9), 1161.
21 Yang M, Wang Z, Li M, et al. Journal of Vinyl and Additive Technology, 2023, 29(6), 939.
22 Hao G P, Hippauf F, Oschatz M, et al. ACS Nano, 2014, 8(7), 7138.
23 Hanif W, Hardiansyah A, Randy A, et al. RSC Advances, 2021, 11(46), 29029.
24 Pelinescu D, Anastasescu M, Bratan V, et al. Gels, 2023, 9(8), 650.
25 Tong X, Zheng J, Lu Y, et al. Materials Letters, 2007, 61(8-9), 1704.
26 KAM S C. Preparation and properties of physically cross-linkeddouble-network hydrogels. Master's Thesis, Jinan University, China, 2020 (in Chinese).
淦述春. 物理交联双网络水凝胶的制备及性能研究. 硕士学位论文, 暨南大学, 2020.
27 Liu Q, Qiu J, Yang C, et al. Advanced Materials Technologies, 2021, 6(1), 2000919.
28 Hassan C M, Peppas N A. Macromolecules, 2000, 33(7), 2472.
29 Zhang Y, Zhu Y, Zheng S, et al. Journal of Energy Chemistry, 2021, 63, 498.
30 Zhou J, Ellis A V, Voelcker N H. Electrophoresis, 2010, 31(1), 2.
31 Khan S, Ul-Islam M, Ullah M W, et al. International Journal of Biological Macromolecules, 2018, 107, 865.
32 Peng Y, Yan B, Li Y, et al. Journal of Materials Science, 2020, 55, 1280.
33 Han L, Liu K, Wang M, et al. Advanced Functional Materials, 2018, 28(3), 1704195.
[1] 赵庭煜, 邵亮, 姬占有, 何寅坤, 王广静, 张涛. 高灵敏、强粘附性导电水凝胶的制备及在柔性传感中的应用[J]. 材料导报, 2025, 39(4): 24010212-11.
[2] 唐言, 严娇, 王犁, 安鹏, 颜贵龙, 来婧娟, 李振宇, 周利华, 武元鹏. 羧甲基瓜尔胶/聚乙烯醇/聚丙烯酰胺形状记忆导电水凝胶的制备及性能研究[J]. 材料导报, 2025, 39(3): 23090015-7.
[3] 白忠薛, 王学川, 李佳俊, 冯宇宇, 白波涛, 黄梦晨, 岳欧阳, 刘新华. 生物质基导电水凝胶的研究进展[J]. 材料导报, 2024, 38(4): 22090215-14.
[4] 伍红雨, 肖海, 曾向东, 赵晓昱. 导电水凝胶材料研究进展及在超级电容器的应用[J]. 材料导报, 2024, 38(19): 23060125-8.
[5] 张永芳, 文镜茜, 董丽虹, 王海斗, 郭伟玲, 黄艳斐. 基于碳纳米管及其复合材料的柔性应变传感器研究进展[J]. 材料导报, 2024, 38(14): 23050046-11.
[6] 刘亮, 李思雨, 赵春霞, 向东, 李云涛, 李辉. 纤维素基碳材料应变传感器的制备及性能[J]. 材料导报, 2024, 38(13): 22110159-6.
[7] 王琦胜, 何发旺, 刘振国, 王经伟, 李红玉. 不同聚酯二元醇合成聚氨酯对导电银浆性能的影响[J]. 材料导报, 2024, 38(13): 22110234-6.
[8] 门海蛟, 宋健尧, 黄秉经, 李建昌. 柔性可穿戴电子应变传感器的研究进展[J]. 材料导报, 2023, 37(21): 22030317-23.
[9] 周鑫, 关水, 孙长凯. 基于壳聚糖/黄原胶互穿网络的导电水凝胶支架制备及性能研究[J]. 材料导报, 2023, 37(18): 22030238-8.
[10] 戴金荣, 唐志红, 段于森, 张景贤. Si3N4/W高温共烧陶瓷的制备与研究[J]. 材料导报, 2023, 37(17): 22040171-6.
[11] 严亮, 王沛, 黄国辉, 李慧敏, 蒋坤. 基于动态非共价键作用的HP(AA-co-AM)自愈合凝胶的构建及传感性能研究[J]. 材料导报, 2023, 37(14): 22010002-6.
[12] 鲁春驰, 王影, 王东征. 涂布正极表面丝网印刷氧化锌颗粒对锂离子电池性能的影响[J]. 材料导报, 2022, 36(21): 21050056-5.
[13] 刘炘城, 邵海成, 乔冠军, 陆浩杰, 于刘旭, 张相召, 刘桂武. 氧化铝陶瓷表面连续导电金膜的制备工艺及性能[J]. 材料导报, 2021, 35(8): 8076-8081.
[14] 毛杰, 戴静波, 周俊慧, 张新波, 田宗明, 张斌, 秦永华. 聚乙烯醇/乙二醇/氧化石墨烯/聚苯胺导电复合物水凝胶的制备及性能研究[J]. 材料导报, 2021, 35(24): 24172-24176.
[15] 张永芳, 王霞, 邢志国, 黄艳斐, 郭伟玲. 面向机械装备健康监测的振动传感器研究现状[J]. 材料导报, 2020, 34(13): 13121-13130.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed