Please wait a minute...
材料导报  2025, Vol. 39 Issue (21): 24100045-12    https://doi.org/10.11896/cldb.24100045
  金属与金属基复合材料 |
基于生物医用镁合金的腐蚀行为及其影响因素
巩晓乐1,2,*, 赵红运1, 陈吉华2, 严红革2
1 中色创新研究院(天津)有限公司,天津 300393
2 湖南大学材料科学与工程学院,长沙 410082
The Corrosion Behavior of Biomedical Magnesium Alloys and the Influencing Factors
GONG Xiaole1,2,*, ZHAO Hongyun1, CHEN Jihua2, YAN Hongge2
1 China Nonferrous Metals Innovation Institute (Tianjin) Co., Ltd., Tianjin 300393, China
2 School of Materials Science and Engineering, Hunan University, Changsha 410082, China
下载:  全 文 ( PDF ) ( 27086KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁合金因生物相容性好、生体环境可降解等优势,被用作硬组织植入材料,然而稀土镁合金综合性能优良但成本高昂,因此Mg-Zn系等低成本合金材料的设计和开发成为研究热点。随着加工手段的丰富以及国内外研究的深入,该领域对镁合金腐蚀机制与理论的认识和理解也在不断发展。镁合金经过合金化、塑性变形以及热处理等处理后,其第二相、孪晶、位错等微观组织发生改变,进而影响其降解行为、力学性能退化。本文综述了微观组织特征对镁合金腐蚀行为、应力腐蚀行为的影响,并选取Mg-Zn系合金进行重点阐述,为促进新型生物医用可降解镁合金的制备加工提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
巩晓乐
赵红运
陈吉华
严红革
关键词:  生物医用金属  可降解镁合金  微观组织  腐蚀行为  应力腐蚀    
Abstract: Mg alloys have been used as implant materials due to their advantages of good biocompatibility and biodegradability. However, Mg-RE alloys have excellent comprehensive properties but high cost, so the design and development of low-cost materials such as Mg-Zn alloys has become a research hotspot. With the enrichment of processing techniques and the in-depth exploration of corrosion behavior, the corrosion mechanism and corrosion theory of Mg alloys are continuous developing. After alloying, plastic deformation and heat treatment, the second phases, twins and dislocations of Mg alloys change, which in turn affects their degradation behavior and mechanical properties. In this paper, the effects of microstructure characteristics on corrosion behavior and stress corrosion behavior of Mg alloys were reviewed, and Mg-Zn alloys were selected to elaborate. These should provide reference for preparation and processing of new biomedical Mg alloys.
Key words:  biomedical metal    degradable magnesium alloy    microstructure    corrosion behavior    stress corrosion
出版日期:  2025-11-10      发布日期:  2025-11-10
ZTFLH:  TG178  
基金资助: 国家自然科学基金(51571089)
通讯作者:  *巩晓乐,博士,中色创新研究院(天津)有限公司中级工程师。目前主要从事有色金属材料、低温结构材料以及超导材料等方面的研究工作。xiaolegong@163.com   
引用本文:    
巩晓乐, 赵红运, 陈吉华, 严红革. 基于生物医用镁合金的腐蚀行为及其影响因素[J]. 材料导报, 2025, 39(21): 24100045-12.
GONG Xiaole, ZHAO Hongyun, CHEN Jihua, YAN Hongge. The Corrosion Behavior of Biomedical Magnesium Alloys and the Influencing Factors. Materials Reports, 2025, 39(21): 24100045-12.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100045  或          https://www.mater-rep.com/CN/Y2025/V39/I21/24100045
1 Khorashadizade F, Abazari S, Rajabi M, et al. Journal of Materials Research and Technology, 2021, 15, 6034.
2 Song G. Corrosion Science, 2007, 49(4), 1696.
3 Song J, She J, Chen D, et al. Journal of Magnesium and Alloys, 2020, 8(1), 1.
4 Zheng Y F, Gu X N, Witte F. Materials Science and Engineering: R, 2014, 77, 1.
5 Fan Z M, Yu J, Song Y W, et al. Journal of Chinese Society for Corrosion and Protection, 2018, 38(4), 317(in Chinese).
樊志民, 于锦, 宋影伟, 等. 中国腐蚀与防护学报, 2018, 38(4), 317.
6 Izumi S, Yamasaki M, Kawamura Y. Corrosion Science, 2009, 51(2), 395.
7 Song Y, Shan D, Chen R, et al. Corrosion Science, 2009, 51(5), 1087.
8 Williams G, Grace R. Electrochimica Acta, 2011, 56(4), 1894.
9 Wang H X, Yu J, Song Y W. Surface Technology, 2016, 45(12), 36(in Chinese).
王宏新, 于锦, 宋影伟. 表面技术, 2016, 45(12), 36.
10 Lebouil S, Gharbi O, Volovitch P, et al. Corrosion, 2015, 71(2), 234.
11 Li Y, Song G L, Lin H C, et al. Corrosion Science and Protection Technology, 1999(4), 11(in Chinese).
李瑛, 宋光铃, 林海潮, 等. 腐蚀科学与防护技术, 1999(4), 11.
12 Nie J F. Metallurgical and Materials Transactions A, 2012, 43(11), 3891.
13 Zheng K Y, Dong J, Zeng X Q, et al. Materials Science and Enginee-ring: A, 2008, 491(1-2), 103.
14 Kim K H, Nam N D, Kim J G, et al. Intermetallics, 2011, 19(12), 1831.
15 Chen J H, Zou Z Y, Yan H G, et al. Rare Metal Materials and Engineering, 2017, 46(8), 2220(in Chinese).
陈吉华, 邹正阳, 严红革, 等. 稀有金属材料与工程, 2017, 46(8), 2220.
16 Argade G R, Panigrahi S K, Mishra R S. Corrosion Science, 2012, 58, 145.
17 Wang H, Estrin Y, Zúberová Z. Materials Letters, 2008, 62(16), 2476.
18 Ma H. First-principles modeling and application of electrochemical corrosion of metals and alloys. Ph.D. Thesis, University of Science and Technology of China, China, 2018(in Chinese).
马会. 金属和合金电化学腐蚀的第一性原理计算建模及应用. 博士学位论文, 中国科学技术大学, 2018.
19 Pawar S, Slater T J A, Burnett T L, et al. Acta Materialia, 2017, 133, 90.
20 Wang B J, Xu D K, Dong J H, et al. Scripta Materialia, 2014, 88, 5.
21 Bai J, Sun C, Wang C, et al. Journal of Alloys and Compounds, 2024, 1005, 176119.
22 Bonora P L, Andrei M, Eliezer A, et al. Corrosion Science, 2002, 44(4), 729.
23 Hamu G B, Eliezer D, Wagner L. Journal of Alloys and Compounds, 2009, 468(1-2), 222.
24 Andrei M, Eliezer A, Bonora P L, et al. Materials and Corrosion, 2002, 53(7), 455.
25 Feng Y, Yi J, Luo Q, et al. Corrosion Science, 2024, 239, 112397.
26 Li X, Jiang J, Zhao Y, et al. Transactions of Nonferrous Metals Society of China, 2015, 25(12), 3909.
27 Xie J, Zhang J, Zhang Z, et al. Journal of Materials Research and Technology, 2022, 19, 30.
28 Ma K, Wang J, Zheng W, et al. Corrosion Science, 2022, 208, 110689.
29 Dong Q, Jiang J, Zhang J, et al. Journal of Magnesium and Alloys, https://doi. org/10. 1016/j. jma. 2024. 07. 023.
30 Zhang L, Zhang J, Xu C, et al. Materials Letters, 2014, 133, 158.
31 Aung N N, Zhou W. Corrosion Science, 2010, 52(2), 589.
32 Zou G, Peng Q, Wang Y, et al. Journal of Alloys and Compounds, 2015, 618, 44.
33 Liu J, Han E, Song Y, et al. Journal of Alloys and Compounds, 2018, 757, 356.
34 Gong X, Chen J, Yan H, et al. Journal of Materials Research and Technology, 2023, 22, 2844.
35 Song Y, Han E H, Shan D, et al. Corrosion Science, 2012, 65, 322.
36 Ding Y, Li Y, Lin J, et al. Journal of Materials Chemistry B, 2015, 3(18), 3714.
37 Gandel D S, Easton M A, Gibson M A, et al. Springer International Publishing, 2013, 8(69), 744.
38 Hofstetter J, Martinelli E, Pogatscher S, et al. Acta Biomaterialia, 2015, 23, 347.
39 Hua P, Zou H, Chai Y, et al. Materials Today Communications, 2024, 41, 110466.
40 Mohedano M, Blawert C, Yasakau K A, et al. Materials Characterization, 2017, 128, 85.
41 Rosalbino F, De Negri S, Saccone A, et al. Journal of Materials Science: Materials in Medicine, 2010, 21(4), 1091.
42 Shi X, Lv Y, Zhang Y, et al. Journal of Alloys and Compounds, 2024, 1008, 176590.
43 Liu X, Shan D, Song Y, et al. Electrochimica Acta, 2011, 56(5), 2582.
44 Tie D, Feyerabend F, et al. European Cells and Materials, 2013, 25, 284.
45 Song G L, Unocic K A, Meyer H, et al. Corrosion Science, 2016, 104, 36.
46 Diplas S, Tsakiropoulos P, Brydson R M D, et al. Materials Science and Technology, 1998, 14(7), 699.
47 Wang C, Wang J, Ma D, et al. International Journal of Quantum Che-mistry, 2021, 121(11), e26626.
48 Budruk Abhijeet S, Balasubramaniam R, Gupta M. Corrosion Science, 2008, 50(9), 2423.
49 Iwasawa S, Negishi Y, Kamado S, et al. Journal of Japan Institute of Light Metals, 1994, 44(1), 3.
50 Chen C, Wang M, Wang D, et al. Journal of Alloys and Compounds, 2007, 438(1-2), 321.
51 Liao J, Hotta M. Corrosion Science, 2016, 112, 276.
52 Zhou B, Huang H, Miao H, et al. Corrosion Science, 2024, 240, 112495.
53 Yu F, Peng Y, Liu F, et al. Journal of Rare Earths, https://doi. org/10. 1016/j. jre. 2024. 10. 007.
54 Anonymous. Biomaterials: Physics and Chemistry. IntechOpen, UK, 2011.
55 Chen M X. Study on microstructure, mechanical properties and bio-corrosion properties Mg-5Zn-xSr alloys. Master’s Thesis, Hunan University, China, 2017(in Chinese).
程美信. Mg-5Zn-xSr镁合金的组织、力学性能和生体腐蚀性能研究. 硕士学位论文, 湖南大学, 2017.
56 Jingru G, Donglei H, Jiale G, et al. Rare Metal Materials and Engineering, 2022, 51(7), 2379.
57 Liu H, Gao Y, Liu J Z, et al. Acta Materialia, 2013, 61(2), 453.
58 Ben-Hamu G, Eliezer D, Kaya A, et al. Materials Science and Enginee-ring: A, 2006, 435, 579.
59 Bornapour M, Muja N, Shum-Tim D, et al. Acta Biomaterialia, 2013, 9(2), 5319.
60 Zhang Y, Gore P, Rong W, et al. Corrosion Science, 2018, 136, 106.
61 Hofstetter J, Becker M, Martinelli E, et al. JOM, 2014, 66(4), 566.
62 Zhao X, Shi L, Xu J. Journal of Materials Science & Technology, 2013, 29(9), 781.
63 Kubásek J, Vojtěch D. Transactions of Nonferrous Metals Society of China, 2013, 23(5), 1215.
64 Sun L, Ma H, Guan C, et al. Corrosion Science, 2022, 208, 110610.
65 Liu J, Yang L, Zhang C, et al. Journal of Materials Science & Technology, 2019, 35(8), 1644.
66 Zhao M C, Liu M, Song G, et al. Corrosion Science, 2008, 50(7), 1939.
67 Wu G, Zhao Y, Zhang X, et al. Corrosion Science, 2013, 68, 279.
68 Zhou W, Shen T, Aung N N. Corrosion Science, 2010, 52(3), 1035.
69 Li Y, Zhang T, Wang F. Electrochimica Acta, 2006, 51(14), 2845.
70 Ma Y, Wang D, Li H, et al. Transactions of Nonferrous Metals Society of China, 2021, 31(1), 111.
71 Hu Z, Yin Z, Yin Z, et al. Corrosion Science, 2020, 176, 108923.
72 Yin Z, He R, Chen Y, et al. Applied Surface Science, 2021, 536, 147761.
73 Bahmani A, Arthanari S, Shin K S. Journal of Magnesium and Alloys, 2019, 7(1), 9.
74 Hsieh C Y, Huang S Y, Chu Y R, et al. Journal of Materials Research and Technology, 2023, 22, 2343.
75 Shen J, Lai T, Yin Z, et al. Journal of Magnesium and Alloys, 2024, 12(3), 1170.
76 Mingo B, Arrabal R, Mohedano M, et al. Materials & Design, 2017, 130, 48.
77 Ben-Hamu G, Eliezer D, Shin K S. Materials Science and Engineering: A, 2007, 447(1-2), 35.
78 Kondoh K, Takei R, Kariya S, et al. Materials Chemistry and Physics, 2022, 279, 125760.
79 Coy A E, Viejo F, Skeldon P, et al. Corrosion Science, 2010, 52(12), 3896.
80 Yin S, Duan W, Liu W, et al. Corrosion Science, 2020, 166, 108419.
81 Liu J, Yang L, Zhang C, et al. Journal of Alloys and Compounds, 2019, 782, 648.
82 Cao X, Zhang Z, Xu C, et al. Materials Chemistry and Physics, 2021, 271, 124928.
83 Ci W, Chen X, Sun Y, et al. Journal of Materials Science & Technology, 2023, 158, 31.
84 Walsh C T, Sandstead H H, Prasad A S, et al. Environmental Health Perspectives, 1994, 102, 5.
85 Jiang Q, Lu D, Liu C, et al. Frontiers in Materials, 2021, 8, 761052.
86 Peng Q, Li X, Ma N, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 10, 128.
87 Kubásek J, Vojtěch D. Journal of Materials Science: Materials in Medicine, 2013, 24(7), 1615.
88 Prabhu D B, Nampoothiri J, Elakkiya V, et al. Materials Science and Engineering: C, 2020, 106, 110164.
89 Cui T, Guan R G, Qin H M. Advanced Science Letters, 2013, 19(4), 1082.
90 Cho D H, Lee B W, Park J Y, et al. Journal of Alloys and Compounds, 2017, 695, 1166.
91 Yin P, Li N F, Lei T, et al. Journal of Materials Science: Materials in Medicine, 2013, 24(6), 1365.
92 Zhao X, Shi L, Xu J. Materials Science and Engineering: C, 2013, 33(7), 3627.
93 Zhang S, Zhang X, Zhao C, et al. Acta Biomaterialia, 2010, 6(2), 626.
94 Huan Z G, Leeflang M A, Zhou J, et al. Journal of Materials Science: Materials in Medicine, 2010, 21(9), 2623.
95 Zhang W, Shen Y, Pan H, et al. Acta Biomaterialia, 2011, 7(2), 800.
96 Lu Y, Bradshaw A R, Chiu Y L, et al. Journal of Alloys and Compounds, 2014, 614, 345.
97 He R, Liu R, Chen Q, et al. Materials Letters, 2018, 228, 77.
98 Liu X, Shan D, Song Y, et al. Transactions of Nonferrous Metals Society of China, 2010, 20(7), 1345.
99 Zhou B. Effects of aging treatment on microstructure properties and corrosion resistance of Mg-4Zn alloy. Master’s Thesis, Hunan University, China, 2018(in Chinese).
周博. 时效处理对Mg-4Zn合金微观组织、力学性能和耐腐蚀性能的影响. 硕士学位论文, 湖南大学, 2018.
100 Yu Z L. Effect of Ca and Sr microalloying and aging treatment on corrosion behavior of deformed Mg-4Zn alloy. Master’s Thesis, Hunan University, China, 2020(in Chinese).
余宗霖. Ca、Sr微合金化及时效处理对变形态Mg-4Zn合金腐蚀行为的影响. 硕士学位论文, 湖南大学, 2020.
101 Gong X L. Study on effects of heat treatment on corrosion and stress corrosion behaviors of Mg-4Zn-xSr alloy and the related mechanisms. Ph. D. Thesis, Hunan University, China, 2024(in Chinese).
巩晓乐. 热处理对 Mg-4Zn-xSr 合金腐蚀和应力腐蚀行为的影响及其相关机理研究. 博士学位论文, 湖南大学, 2024.
102 Zhang K, Wang C, Liu S, et al. Corrosion Science, 2023, 220, 111254.
103 Song Y, Han E H, Shan D, et al. Corrosion Science, 2012, 60, 238.
104 Ibrahim H, Klarner A D, Poorganji B, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 69, 203.
105 Guo H. Effects of high strain rate rolling on microstructure and bio-corrosion behavior of Mg-Zn-Mn-xSr alloy. Master’s Thesis, Hunan University, China, 2020(in Chinese).
郭辉. 高应变速率轧制对Mg-Zn-Mn-xSr合金组织和生体腐蚀行为的影响. 硕士学位论文, 湖南大学, 2020.
106 Cai C H. Fabrication and study on microstructure and properties of degradable Mg-Zn-Zr-Nd series alloys. Ph. D. Thesis, University of Science and Technology Beijing, China, 2021(in Chinese).
蔡长宏. 可降解Mg-Zn-Zr-Nd系镁合金的制备及组织与性能研究. 博士学位论文, 北京科技大学, 2021.
107 Zhang C Z. The study of the strengthening-toughening and uniform degradation of bone implantation Mg-Zn-Ca alloy processed by high pressure torsion. Ph. D. Thesis, Zhengzhou University, China, 2016(in Chinese).
张聪正. 高压扭转骨植入Mg-Zn-Ca合金强韧化和均匀降解的研究. 博士学位论文, 郑州大学, 2016.
108 Liu Y Y. Effects of laser remelting and laser cladding on microstructure and properties of Mg-Zn-Y-Zr alloy. Master’s Thesis, Yanshan University, China, 2020(in Chinese).
刘月洋. 激光重熔与激光熔覆对Mg-Zn-Y-Zr合金的组织与性能的影响. 硕士学位论文, 燕山大学, 2020.
109 Choudhary L, Raman R K S, Nie J F. Corrosion, 2012, 68(6), 499.
110 Chu W Y. Hydrogen embrittlement and stress corrosion, Science Press, China, 2013, pp. 206(in Chinese).
褚武扬. 氢脆和应力腐蚀. 科学出版社, 2013, pp. 206.
111 Li C, Liu Y, Wang Q, et al. Materials Characterization, 2010, 61(1), 123.
112 Wearmouth W R, Dean G P, Parkins R N. Corrosion, 1973, 29(6), 251.
113 Winzer N, Atrens A, Dietzel W, et al. Metallurgical and Materials Transactions A, 2008, 39(5), 1157.
114 Fairman L, Bray H J. British Corrosion Journal, 1971, 6(4), 170.
115 Winzer N, Atrens A, Dietzel W, et al. Materials Science and Enginee-ring: A, 2008, 488(1-2), 339.
116 Yan X X. Microstructure and corrosion behavior of wrought Mg-Ga alloys. Master’s Thesis, Hunan University, China, 2021(in Chinese).
剡秀秀. Mg-Ga系变形合金的组织与腐蚀行为研究. 硕士学位论文, 湖南大学, 2021.
117 Cao F, Shi Z, Song G L, et al. Corrosion Science, 2015, 96, 121.
118 Avedesian M, Baker H. ASM specialty handbook-magnesium and magnesium alloys. ASM International, USA, 1999.
119 Ben-Hamu G, Eliezer D, Dietzel W, et al. Corrosion Science, 2008, 50(5), 1505.
120 Jafari S, Raman R K S, Davies C H J, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 634.
121 Chen L, Sheng Y, Wang X, et al. Materials, 2018, 11(4), 551.
122 Padekar B S, Raja V S, Singh Raman R K, et al. Materials Science Forum, 2011, 690, 361.
123 Song Y, Wang Z, Liu Y, et al. Advanced Engineering Materials, 2017, 19(7), 1700021.
124 Liu G L. Acta Physica Sinica, 2006(12), 6570(in Chinese).
刘贵立. 物理学报, 2006(12), 6570.
125 Song Y L, Wang Z, Liu Y H, et al. Journal of Hunan University (Natural Sciences), 2018, 45(6), 22(in Chinese).
宋雨来, 王震, 刘耀辉, 等. 湖南大学学报(自然科学版), 2018, 45(6), 22.
126 Bobby Kannan M, Dietzel W, Blawert C, et al. Materials Science and Engineering: A, 2008, 480(1-2), 529.
127 Huang L, Wang K, Wang W, et al. Engineering Failure Analysis, 2018, 92, 392.
128 Zhang Y, You J, Lu J, et al. Surface and Coatings Technology, 2010, 204(24), 3947.
129 Casajús P, Winzer N. Materials Science and Engineering: A, 2014, 602, 58.
130 Atrens A, Winzer N, Song G, et al. Advanced Engineering Materials, 2006, 8(8), 749.
131 Wang J, Chen J, Han E, et al. Materials Transactions, 2008, 49(5), 1052.
132 Zhu L W, He X L, Wei Y H, et al. Rare Metal Materials and Engineering, 2015, 44(10), 2481(in Chinese).
朱立文, 贺秀丽, 卫英慧, 等. 稀有金属材料与工程, 2015, 44(10), 2481.
133 Choudhary L, Singh Raman R K, Hofstetter J, et al. Materials Science and Engineering: C, 2014, 42, 629.
134 Shi Z, Hofstetter J, Cao F, et al. Corrosion Science, 2015, 93, 330.
135 Yu Z, Chen J, Yan H, et al. Materials Letters, 2020, 260, 126920.
136 Wang B J, Xu D K, Sun J, et al. Corrosion Science, 2019, 157, 347.
137 Zhang Z Q, Yang Y X, Li J A, et al. Bioactive Materials, 2021, 6(12), 4729.
138 Wang B, Gao J, Wang L, et al. Materials Letters, 2012, 70, 174.
[1] 秦传广, 姜博, 刘乃志, 王晔, 胡茂良, 许红雨, 吉泽升, 尚金翅. Al7Si0.5Mg合金喷丸处理微观组织形貌及腐蚀行为研究[J]. 材料导报, 2025, 39(9): 24030204-7.
[2] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[3] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[4] 姚未怡, 卜恒勇. 轧制态7050铝合金双道次热变形微观组织演变[J]. 材料导报, 2025, 39(4): 23120032-8.
[5] 王银晨, 常云峰, 秦志伟, 张亮亮, 董红刚, 程亚芳, 郭鹏, 李鹏. TiAl系合金和镍基高温合金连接技术研究进展[J]. 材料导报, 2025, 39(21): 24100004-15.
[6] 王帅, 卿华, 卢照, 姚青荣, 陈泽炜, 王语菡, 张雅, 田伟庆, 谈敦铭, 赵叶曼. 电脉冲处理对TC4钛合金组织及力学性能的影响[J]. 材料导报, 2025, 39(21): 24090220-6.
[7] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[8] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[9] 梁文杰, 董强胜, 章晓波. 增材制造铝合金组织结构与性能研究进展[J]. 材料导报, 2025, 39(19): 24100182-15.
[10] 敬学锐, 吴雄, 王森巍, 肖辉, 佘加, 汤爱涛, 王敬丰. 轨交用Mg-9Al-0.1Mn-xCa挤压合金的组织与力学性能研究[J]. 材料导报, 2025, 39(18): 24070127-6.
[11] 夏正辉, 汪丹丹, 丁健翔, 张培根, 田无边, 王丽瑶, 李大平, 魏坤霞, 魏伟, 孙正明. MAX相增强金属基复合材料的研究进展[J]. 材料导报, 2025, 39(17): 24100130-17.
[12] 龚海军, 王玲, 亢红叶, 左乾隆, 安治国, 高正源. 铝合金粉末80 μm大层厚SLM成型熔池形貌与组织演变[J]. 材料导报, 2025, 39(16): 24080006-7.
[13] 李波, 许龙, 杨涵, 杜勇. 均匀化处理对时效强化Al-Mg-Zn-Sc-Zr合金微观组织与性能的影响[J]. 材料导报, 2025, 39(16): 24070104-6.
[14] 刁旺战, 徐祥久, 王萍, 赵卫君, 刘海, 张松. Haynes 282焊接接头长时热暴露后的力学性能和组织稳定性[J]. 材料导报, 2025, 39(14): 24050002-7.
[15] 麻相龙, 曹睿, 徐灏, 周宁, 高爽, 徐志伟. CoCrFeNiMn高熵合金中间层热等静压扩散连接钛/铝接头组织和性能[J]. 材料导报, 2025, 39(12): 24060014-7.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[4] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[5] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[6] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[7] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[10] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed