Please wait a minute...
材料导报  2025, Vol. 39 Issue (21): 24100050-7    https://doi.org/10.11896/cldb.24100050
  无机非金属及其复合材料 |
240 ℃下水合陶瓷体系的耐高温性能及其影响因素
王闯闯1,2, 庞学玉1,2,*, 汪海阁3, 黄贤斌1,2, 吕开河1,2, 孙金声1,2
1 深层油气全国重点实验室(中国石油大学(华东)),山东 青岛 266580
2 中国石油大学(华东)石油工程学院,山东 青岛 266580
3 中国石油工程技术研究院有限公司,北京 102206
High-temperature Resistance Properties of Hydroceramic Systems at 240 ℃ and Their Influencing Factors
WANG Chuangchuang1,2, PANG Xueyu1,2,*, WANG Haige3, HUANG Xianbin1,2, LYU Kaihe1,2, SUN Jinsheng1,2
1 State Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, Shandong, China
2 School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
3 CNPC Engineering Technology R & D Company Limited, Beijing 102206, China
下载:  全 文 ( PDF ) ( 12685KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水合陶瓷体系具有优于加砂水泥浆体系的长期耐高温性能,在高温高压井固井方面有巨大潜力,但对其长期耐高温性能的影响因素方面的研究还有明显不足。本工作以密度为1.65 g/cm3的硅砂和氢氧化钙组成的水合陶瓷体系为基础,研究反应物种类(α-Al2O3、纳米活性氧化铝、微硅)和钙硅物质的量比对水合陶瓷体系长期耐高温性能的影响。与固井水泥相似,水合陶瓷体系的强度衰退主要伴随高温长期养护过程中强度下降、内部孔径粗化以及水化硅酸钙凝胶向晶体型矿物转化的现象。本研究将不同水合陶瓷体系在240 ℃下养护2 d、30 d和90 d,随后对其进行各项宏观和微观性能测试。结果表明,α-Al2O3和纳米活性氧化铝的加入均可促进11 Å雪硅钙石的形成,从而大幅提升水合陶瓷体系硬化后的物理力学性能,但两种氧化铝的加入一定程度上降低了二氧化硅的水化反应参与度,也带来了体系长期养护后的强度衰退问题(30~90 d衰退约15%);微硅的加入可以提高体系内其他反应物的水化反应参与度,从而提升C-(A)-S-H的生成量,细化孔隙结构,可同时提升水合陶瓷体系物理力学性能和长期稳定性。当钙硅铝物质的量比为2∶2∶1时,由硅砂+微硅+氢氧化钙+α-Al2O3+纳米活性氧化铝组成的水合陶瓷体系养护2 d的强度可达19.1 MPa,养护90 d后的强度为19.6 MPa,没有出现任何强度衰退现象。通过降低氢氧化钙添加量使得钙硅物质的量比降低为0.5时(钙硅铝物质的量比1∶2∶1),水合陶瓷体系养护2 d的抗压强度得到进一步提升(达到22.3 MPa),但在长期养护后会生成铝白钙沸石,导致其强度大幅衰退。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王闯闯
庞学玉
汪海阁
黄贤斌
吕开河
孙金声
关键词:  水合陶瓷体系  耐高温  强度衰退  宏观性能  微观分析    
Abstract: Hydroceramic systems demonstrate superior long-term high-temperature resistance compared to silica-enriched Portland cement systems, exhibiting significant potential in cementing high-pressure high-temperature (HPHT) wells. However, the factors affecting their long-term high-temperature resistance remain inadequately studied. This work was based on a hydroceramic system composed of silica and calcium hydroxide, with a density of 1.65 g/cm3. The impacts of different types of reactants (α-Al2O3, nano-activated alumina, silica fume) and calcium-to-silica molar ratio on the long-term high-temperature resistance of the hydroceramic systems were investigated. Similar to well cement systems, the strength retrogression of hydroceramic systems is corrected with the reduction in strength, coarsening of internal pores, and the transformation of C-(A)-S-H gel into crystalline minerals during long-term curing at high temperatures. During this study, various hydroceramic systems were cured at 240 ℃ for 2 days, 30 days, and 90 days, respectively, and subsequently evaluated by macro-and micro-performance tests. The results indicated that the incorporation of α-Al2O3 and nano-activated alumina promoted the formation of tobermorite 11 Å, resulting in a significant improvement in the physical-mechanical properties of the set hydroceramic system. However, the addition of these alumina types somewhat reduced the parti-cipation of silica in the hydration reaction, leading to strength retrogression issues in the system (approximately a 15% decrease in strength from 30 to 90 days). The inclusion of silica fume enhanced the participation of other reactants in the hydration reaction, thereby enhancing the formation of C-(A)-S-H and refining the pore structure. This dual effect enhanced the physical-mechanical properties and long-term stability of the hydroceramic system. When the calcium-silica-aluminum molar ratio was 2∶2∶1, the compressive strength of the hydroceramic system composed of silica, silica fume, calcium hydroxide, α-Al2O3, and nano-activated alumina was 19.1 MPa after curing for 2 days and 19.6 MPa after curing for 90 days, with no strength retrogression observed. Through the reduction of the calcium hydroxide content, a lower calcium-to-silica ratio of 0.5 (with a calcium-silica-aluminum molar ratio of 1∶2∶1) can be obtained and the early strength of the hydroceramic system could be enhanced at 2 days, reaching 22.3 MPa. However, during prolonged curing, the formation of reyerite led to a substantial decrease in strength.
Key words:  hydroceramic system    high-temperature resistance    strength retrogression    macroscopic performance    microscopic analysis
出版日期:  2025-11-10      发布日期:  2025-11-10
ZTFLH:  TE256  
基金资助: 国家自然科学基金基础科学中心项目(52288101);中央高校基本科研业务费专项资金(23CX05001A)
通讯作者:  *庞学玉,博士,中国石油大学(华东)石油工程学院油气井工程研究所所长,主要从事固井水泥材料科学与应用、井筒水泥环封隔完整性领域的研究。x.pang@upc.edu.cn   
作者简介:  王闯闯,中国石油大学(华东)石油工程学院博士研究生,主要研究领域为水合陶瓷体系在高温高压固井中的应用。
引用本文:    
王闯闯, 庞学玉, 汪海阁, 黄贤斌, 吕开河, 孙金声. 240 ℃下水合陶瓷体系的耐高温性能及其影响因素[J]. 材料导报, 2025, 39(21): 24100050-7.
WANG Chuangchuang, PANG Xueyu, WANG Haige, HUANG Xianbin, LYU Kaihe, SUN Jinsheng. High-temperature Resistance Properties of Hydroceramic Systems at 240 ℃ and Their Influencing Factors. Materials Reports, 2025, 39(21): 24100050-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100050  或          https://www.mater-rep.com/CN/Y2025/V39/I21/24100050
1 Li Y, Xue Z J, Cheng J, et al. China Petroleum Exploration, 2020, 25(1), 45 (in Chinese).
李阳, 薛兆杰, 程喆, 等. 中国石油勘探, 2020, 25(1), 45.
2 Wang H G, Huang H C, Bi W X, et al. Natural Gas Industry, 2021, 41(8), 163 (in Chinese).
汪海阁, 黄洪春, 毕文欣, 等. 天然气工业, 2021, 41(8), 163.
3 Krakowiak K J, Thomas J J, Musso S, et al. Cement and Concrete Research, 2015, 67, 103.
4 Pang X Y, Qin J K, Sun L J, et al. Cement and Concrete Research, 2021, 144, 106424.
5 Qin J K, Pang X Y, Santra A, et al. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(1), 191.
6 Zhang Y X, Wang C W, Chen Z H, et al. Construction and Building Materials, 2023, 363, 129806.
7 Fu J F. Drilling Fluid and Completion Fluid, 2017, 34(1), 112 (in Chinese).
符军放. 钻井液与完井液, 2017, 34(1), 112.
8 Bybee K. Journal of Petroleum Technology, 2007, 59(2), 68.
9 Krakowiak K J, Thomas J J, James S, et al. Cement and Concrete Research, 2018, 105, 91.
10 Lu P Q, Zeng Y J, Du X Y, et al. In: ARMA-CUPB Geothermal International Conference. Beijing, China, 2019, pp. 1952.
11 Al-Yami A S, Nasr-El-Din H A, Al-Saleh S H, et al. In: SPE Middle East Oil and Gas Show and Conference. Manama, 2007, pp. 105340.
12 Meller N, Hall C, Phipps J S. Materials Research Bulletin, 2005, 40(5), 715.
13 Roy D M, Langton C A, Grutzek M W, et al. In: SPE Oilfield and Geothermal Chemistry Symposium. Stanford, 1980, pp. 8994.
14 Chatterjee N D, Johannes W, Leistner H. Contributions to Mineralogy and Petrology, 1984, 88(1), 1.
15 Dambrauskas T, Baltakys K. Chemical Technology, 2013, 64(2), 45.
16 Meller N, Hall C, Kyritsis K, et al. Cement and Concrete Research, 2007, 37(6), 823.
17 Bernard E, Lothenbach B, Rentsch D. Materials & Design, 2021, 198, 109391.
18 Kyritsis K. Synthesis and characterization of high temperature cement-based hydroceramic materials. Ph. D. Thesis, University of Edinburgh, UK, 2008.
19 Kyritsis K, Hall C, Bentz D P, et al. Journal of the American Ceramic Society, 2009, 92(3), 694.
20 Kyritsis K, Meller N, Hall C. Journal of the American Ceramic Society, 2009, 92(5), 1105.
21 Chatterjee N D. American Mineralogist, 1976, 61(7-8), 699.
22 Boettcher A L. Journal of Petrology, 1970, 11(2), 337.
23 Meller N, Kyritsis K, Hall C. Cement and Concrete Research, 2009, 39(1), 45.
24 Baltakys K, Eisinas A, Doneliene J, et al. Ceramics International, 2019, 45(2), 2881.
25 Baltakys K, Siauciunas R. Journal of Materials Science, 2006, 41, 4799.
26 Klimesch D S, Ray A. Cement and Concrete Research, 1998, 28(9), 1309.
27 American Petroleum Institute. Recommended practice for testing well cements, American Petroleum Institute, US, 2013, pp. 25.
28 Sun L J, Pang X Y, Ghabezloo S, et al. Cement and Concrete Research, 2023, 167, 107120.
29 Li P X, Meng Q X, Li X Y, et al. In: The 33rd International Ocean and Polar Engineering Conference. Ottawa, 2023, pp. 19.
30 Liu J, Qiu X Z, Zhang Y H. In: 2016 International Conference on Architectural Engineering and Civil Engineering. Shanghai, China, 2016, pp.5.
31 Wang J W, Hu Z L, Chen Y, et al. Cement and Concrete Research, 2022, 157, 106811.
32 Galvánková L, Másilko J, Solný T, et al. Procedia Engineering, 2016, 151, 100.
33 Merlino S, Bonaccorsi E, Armbruster T. European Journal of Mineralogy, 2000, 12(2), 411.
34 Merlino S. Mineralogical Magazine, 1988, 52(365), 247.
[1] 乐祥和, 张晓红, 乔英杰, 白成英, 王晓东, 李茂源, 陈为为. 石墨烯改性热固性树脂复合材料研究进展[J]. 材料导报, 2025, 39(9): 24040177-9.
[2] 姜彦杰, 刘浩天, 刘海峰, 车佳玲, 杨维武. 硫酸盐冻融后沙漠砂混凝土单轴受压力学性能试验研究[J]. 材料导报, 2025, 39(7): 23110222-11.
[3] 任永忠, 舒天浩, 李鑫林, 张振宇, 梁补女, 李天义, 金志华. 基于化学刻蚀法构筑超疏水沙子表面及其性能研究[J]. 材料导报, 2025, 39(6): 23050086-5.
[4] 庞学玉, 王闯闯, 孙立君, 黄贤斌, 吕开河, 孙金声. 钙硅比以及不同含铝材料对水合陶瓷体系抗高温性能的影响[J]. 材料导报, 2025, 39(19): 25020044-8.
[5] 汪德才, 魏家伟, 胡磊, 张庆, 董是, 杨澜, 成凯. 路面基层混合料煤矸石掺配方式及耐久性试验研究[J]. 材料导报, 2025, 39(11): 24010125-10.
[6] 张巧, 张艺欣, 陈茜, 侯炜, 涂兵雄. 碳酸钙类石粉在混凝土材料中的再利用研究综述[J]. 材料导报, 2025, 39(10): 24040100-15.
[7] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[8] 蒋增贵, 王欣, 刘剑辉, 刘乐平, 陈正, 莫耀鸿, 赖创林, 史才军. 甘蔗渣灰对磷酸钾镁水泥性能与水化的影响[J]. 材料导报, 2024, 38(18): 23030035-8.
[9] 胡家宇, 徐菲, 钱文勋, 肖怀前, 葛津宇, 李嘉明. 涂覆时间对聚合物水泥基钢筋涂层粘接性能的影响机理[J]. 材料导报, 2024, 38(17): 22060053-4.
[10] 李悦, 龙世儒, 王子赓, 王楠. 磷镁物质的量比对天然水镁石制备的磷酸镁水泥性能的影响[J]. 材料导报, 2024, 38(17): 23120159-6.
[11] 田小革, 李光耀, 陈功, 姚世林, 黄雪梅, 王俊杰, 陆劲州. TPU/Nano-ZnO复合改性沥青的性能研究及微观机制[J]. 材料导报, 2024, 38(16): 23050071-10.
[12] 张思钊, 刘淳, 姜勇刚, 冯坚. 聚酰亚胺气凝胶的耐高温性能研究进展[J]. 材料导报, 2024, 38(13): 23040260-11.
[13] 吉贝贝, 吴楠, 刘姣, 廖维, 吕家杰, 尹昌平, 邢素丽. 高性能邻苯二甲腈树脂分子结构调控研究进展[J]. 材料导报, 2023, 37(S1): 23030102-10.
[14] 孙怡坤, 朱召贤, 王涛, 牛波, 龙东辉. 耐400 ℃高温氰酸酯导电胶的制备与性能[J]. 材料导报, 2023, 37(5): 21060190-5.
[15] 边晨, 郭君渊, 肖建庄, 赵长军. 纳米偏高岭土及细骨料对UHPC力学性能的影响[J]. 材料导报, 2023, 37(23): 22070261-5.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[8] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[9] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
[10] LEI Lin, YANG Qingbo, ZHANG Zhiqing, FAN Xiangze, LI Xu, YANG Mou, DENG Zanhui. Multi-pass Compression Behavior and Microstructure Evolution of AA2195 Aluminum Lithium Alloy[J]. Materials Reports, 2019, 33(z1): 348 -352 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed