Please wait a minute...
材料导报  2025, Vol. 39 Issue (10): 24040100-15    https://doi.org/10.11896/cldb.24040100
  无机非金属及其复合材料 |
碳酸钙类石粉在混凝土材料中的再利用研究综述
张巧1, 张艺欣1,2,3, 陈茜4, 侯炜1,2,3,*, 涂兵雄1,2,3
1 华侨大学土木工程学院,福建 厦门 361021
2 福建省结构工程与防灾重点实验室,福建 厦门 361021
3 南安华大石材产业技术研究院,福建 泉州 362342
4 中交三航局第六工程(厦门)有限公司,福建 厦门 361006
Recycling Calcium Carbonate Stone Powder in Concrete Material:a Review
ZHANG Qiao1, ZHANG Yixin1,2,3, CHEN Xi4, HOU Wei1,2,3,*, TU Bingxiong1,2,3
1 College of Civil Engineering, Huaqiao University, Xiamen 361021, Fujian, China
2 Key Laboratory for Structural Engineering and Disaster Prevention of Fujian Province, Xiamen 361021, Fujian, China
3 Nan’an-HQU Institute of Stone Industry Innovations Technology, Quanzhou 362342, Fujian, China
4 CCCC Third Harbor Engineering No.6 Co., Ltd.,(Xiamen), Xiamen 361006, Fujian, China
下载:  全 文 ( PDF ) ( 41311KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 石粉在混凝土材料中的再利用可为石材行业中的废弃微粉提供规模化消纳途径,诸多学者对石粉混凝土的性能开展了试验研究。本文以碳酸钙类石粉为研究对象,主要包括大理石粉(Marble powder,MP)和石灰石粉(Limestone powder,LP),分析了二者的理化性质与微观形貌特征;系统梳理了国内外学者对掺入MP、LP的水泥基材料性能的研究,分别分析了二者对混凝土水化过程、微细观结构的影响和作用机理,进而分析了不同替代方式、水灰比(w/c)等关键参数对石粉混凝土流变性能、力学性能和耐久性能的影响,并对石粉混凝土的强度预测模型、环境和经济效益、结构应用进行了总结。研究结果表明充分利用MP和LP的细度和组分特性,基于适当的配合比设计,石粉能够起到加速水泥水化、细化孔隙结构的作用,可表现出填充效应、成核效应、化学效应作用机理,从而稳定提升混凝土材料的流变、力学和耐久性能。此外,在强度预测模型方面,机器学习技术能够较好地预测石粉混凝土的强度。在环境和经济评价方面,适量石粉替代水泥或者细骨料能够提升混凝土的环境、经济效益。在结构应用方面,适宜掺量的石粉混凝土能够保证混凝土梁的承载能力。最后对国内外相关技术标准与规范现状进行了总结。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张巧
张艺欣
陈茜
侯炜
涂兵雄
关键词:  大理石粉  石灰石粉  碳酸钙  混凝土  微细观结构  宏观性能    
Abstract: Stone powder can be recycled in concrete materials, offering a large-scale solution for utilizing waste micropowder from the stone industry. There are a lot of experimental studies on the performance of concrete incorporating stone powder. This article focuses on calcium carbonate stone powder, mainly referred to marble powder (MP) and limestone powder (LP) as addition of concrete. Firstly, the physical and chemical properties, and microscopic morphological characteristics of both are analyzed. Then, systematically reviews the researches on properties of cement materials with the addition of MP and LP, analyzes the effects and mechanisms of MP and LP on the hydration process and microstructure of concrete, and investigates the impacts of key parameters, such as various substitution methods, water-cement ratio (W/C), etc, on stone powder concrete performance, including rheological properties, mechanical properties, and durability. Furthermore, strength prediction model, environmental and economic benefits, and structural applications of stone powder concrete were summaried. The research indicates that by fully utilizing the fineness and component characteristics of MP and LP, along with appropriate mix ratio design, stone powder can accelerate cement hydration, refine the pore structure, and demonstrate filling effect, nucleation effect and chemical effect. This process stably improves the rheological, mechanical, and durability properties of concrete materials. Additionally, in terms of strength prediction model, machine learning techno-logy can accurately predict the strength of stone powder concrete. In terms of environmental and economic evaluations, replacing cement or fine aggregate with an appropriate amount of stone powder can enhance the environmental and economic benefits of concrete. In terms of structural applications, suitable amounts of stone powder concrete can ensure the load-bearing capacity of concrete beams. Finally, the status quo of relevant technical standards and specifications at home and abroad are summarized.
Key words:  marble powder    limestone powder    calcium carbonate    concrete    microstructures    macroscopic property
出版日期:  2025-05-25      发布日期:  2025-05-13
ZTFLH:  TB332  
基金资助: 国家自然科学基金(52208313;52178210);福厦泉国家自主创新示范区协同创新平台项目(3502ZCQXT2022002);华侨大学中青年教师科技创新资助计划(ZQN-1116)
通讯作者:  *侯炜,华侨大学土木工程学院教授、博士研究生导师,华侨大学海洋土木工程综合防灾及智能监测研究中心主任。主要研究方向包括创新海洋工程结构及新材料、超高性能混凝土(UHPC/ECC等)及其结构应用、固废(石粉)资源化综合利用、高性能组合结构等。houwei@hqu.edu.cn   
作者简介:  张巧,华侨大学土木工程学院硕士研究生,在侯炜教授和张艺欣副教授的指导下进行研究。目前主要研究领域为轻质超高性能混凝土设计方法与力学性能。
引用本文:    
张巧, 张艺欣, 陈茜, 侯炜, 涂兵雄. 碳酸钙类石粉在混凝土材料中的再利用研究综述[J]. 材料导报, 2025, 39(10): 24040100-15.
ZHANG Qiao, ZHANG Yixin, CHEN Xi, HOU Wei, TU Bingxiong. Recycling Calcium Carbonate Stone Powder in Concrete Material:a Review. Materials Reports, 2025, 39(10): 24040100-15.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040100  或          https://www.mater-rep.com/CN/Y2025/V39/I10/24040100
1 Kavas T, Olgun A. Ceramics Silikaty, 2008, 52(1), 24.
2 Ding X X, Li C Y, Xu Y Y, et al. Construction and Building Materials, 2016, 108, 67.
3 Ramezanianpour A A, Ghiasvand E, Nickseresht I, et al. Cement and Concrete Composites, 2009, 31(10), 715.
4 Corinaldesi V, Moriconi G, Naik T R. Construction and Building Materials, 2010, 24(1), 113.
5 Aydin E, Arel H Ş. Journal of Cleaner Production, 2019, 237, 117801.
6 Khan M M H, Sobuz M H R, Meraz M M, et al. Case Studies in Construction Materials, 2023, 19, e02274.
7 Özkılıç Y O, Zeybek Ö, Bahrami A, et al. Journal of Materials Research and Technology, 2023, 25, 4799.
8 El-Mandouh M A, Hu J W, Mohamed A S, et al. Materials, 2022, 15(20), 7125.
9 Arel H Ş. Journal of Cleaner Production, 2016, 131, 179.
10 Tunc E T. Journal of Environmental Management, 2019, 231, 86.
11 Kuoribo E, Mahmoud H. Journal of Cleaner Production, 2022, 374, 133872.
12 Nayak S K, Satapathy A, Mantry S. Journal of Building Engineering, 2022, 46, 103742.
13 Ahmad I, Shen D, Khan K A, et al. Silicon, 2022, 14, 359.
14 Marinković M, Radović A, Carević V. Building Materials and Structures, 2023, 66, 127.
15 Abbas S, Ahmed A, Nehdi M L, et al. Journal of Materials in Civil Engineering, 2020, 32(9), 04020270.
16 Aliabdo A A, Abd Elmoaty M, Auda E M. Construction and Building Materials, 2014, 50, 28.
17 Mashaly A O, El-Kaliouby B A, Shalaby B N, et al. Journal of Cleaner Production, 2016, 112, 731.
18 Garas G L, Allam M E, Bakhoum E S. ARPN Journal of Engineering and Applied Sciences, 2014, 9(9), 1559.
19 Rodrigues R, De Brito J, Sardinha M. Construction and Building Materials, 2015, 77, 349.
20 Sardinha M, De Brito J, Rodrigues R. Construction and Building Materials, 2016, 119, 45.
21 Salman A M, Akinpelu M A, Yahaya I T, et al. Materials Today:Proceedings, 2023, 86, 51.
22 Mohit M, Haftbaradaran H, Riahi H T. Construction and Building Materials, 2023, 369, 130596.
23 GB/T 8074-2008, 水泥比表面积测定方法 勃氏法, 2008.
24 ASTM, Standard ASTM C204-24, Standard test methods for fineness of hydraulic cement by air-permeability Apparatus, American Society for Testing and Materials, 2024.
25 Gesoğlu M, Güneyisi E, Kocabağ M E, et al. Construction and Building Materials, 2012, 37, 160.
26 Sua-Iam G, Makul N. Journal of Cleaner Production, 2013, 57, 308.
27 Ahmed A, Abbas S, Abbass W, et al. Materials, 2022, 15(11), 3962.
28 Souza A T, Barbosa T F, Riccio L A, et al. Journal of Materials Research and Technology, 2020, 9(1), 847.
29 Li C Z, Jiang L H, Li S S. Cement and Concrete Research, 2020, 131, 106018.
30 Kumar V, Singla S, Garg R. Materials Today:Proceedings, 2021, 43, 857.
31 Ma B G, Wang J, Tan H B, et al. Construction and Building Materials, 2019, 211, 139.
32 Thongsanitgarn P, Wongkeo W, Chaipanich A, et al. Construction and Building Materials, 2014, 66, 410.
33 Liu H Q, Xu Z F, Li W B, et al. Journal of Materials Science & Engineering, 2015, 33(2), 185 (in Chinese).
刘焕芹, 徐志峰, 李维滨, 等. 材料科学与工程学报, 2015, 33(2), 185.
34 Li C Z, Jiang L H. Materials Reports, 2024, 38(1), 72 (in Chinese).
李辰治, 蒋林华. 材料导报, 2024, 38(1), 72.
35 Vardhan K, Goyal S, Siddique R, et al. Construction and Building Materials, 2015, 96, 615.
36 Singh M, Srivastava A, Bhunia D. Journal of Materials in Civil Engineering, 2019, 31(4), 04019011.
37 Jin W Z, Tang X D, Bai Z P, et al. Journal of Materials Engineering and Performance, DOI:10.1007/s11665-023-08766-9.
38 Moon G D, Oh S, Jung S H, et al. Construction and Building Materials, 2017, 135, 129.
39 Li C Z. Structural Concrete, 2022, 23(5), 3284.
40 Wang T K, Yang W W, Zhang J T. Crystals, 2022, 12(6), 868.
41 Choudhary A, Shah V, Bishnoi S. Construction and Building Materials, 2016, 124, 533.
42 Fu Q, Zhang Z R, Zhao X, et al. Journal of Building Engineering, 2022, 50, 104220.
43 Zhu P F, Yang G H, Jiang L H, et al. Advances in Cement Research, 2021, 33(5), 197.
44 Zhou W, Li L, Liu S H, et al. Journal of Central South University, 2017, 24(12), 2932.
45 Bentz D P, Ferraris C F, Jones S Z, et al. Cement and Concrete Composites, 2017, 78, 43.
46 Zhao L L, He T S, Niu M D, et al. Materials, 2024, 17(3), 617.
47 Liu S H, Wang L. Materials Research Innovations, 2014, 18(sup2), S2-186.
48 Ashish D K. Journal of Cleaner Production, 2019, 211, 716.
49 Karakurt C, Dumangöz M. Materials, 2022, 15(5), 1795.
50 Benabed B, Soualhi H, Belaidi A S E, et al. Journal of Building Materials and Structures, 2016, 3(1), 15.
51 Wang Y M, Xiao J Z, Zhang J T. Journal of Renewable Materials, 2022, 10, 2623.
52 Wang Y M, Xiao J Z, Zhang J T, et al. Sustainability, 2022, 14(7), 4170.
53 Seghir N T, Mellas M, Sadowski Ł, et al. Journal of Cleaner Production, 2018, 183, 858.
54 Nežerka V, Hrbek V, Prošek Z, et al. Journal of Cleaner Production, 2018, 195, 1081.
55 Yamanel K, Durak U, İlkentapar S, et al. Journal of Construction, 2019, 18(2), 290.
56 Liu H, Huang Q, Zhao L. Materials Express, 2021, 11(5), 724.
57 Li C, Jiang L. Journal of Building Engineering, 2022, 59, 105132.
58 Du Y B, Ge Y. Journal of Building Materials, 2022, 25(8), 773 (in Chinese).
杜渊博, 葛勇. 建筑材料学报, 2022, 25(8), 773.
59 Felekoglu B. Resources, Conservation and Recycling, 2007, 51(4), 770.
60 Güneyisi E, Gesoğlu M, Özbay E. Materials and Structures, 2009, 42, 813.
61 Munir M J, Kazmi S M S, Wu Y F. Construction and Building Materials, 2017, 154, 590.
62 Mohamadien H A. International Journal of Civil & Structural Engineering, 2012, 3(2), 418.
63 Lezzerini M, Luti L, Aquino A, et al. Applied Sciences, 2022, 12(9), 4481.
64 Liu S H, Yan P Y, Feng J W. Journal of Wuhan University of Technology-Materials Science Edition, 2010, 25(4), 700.
65 van Leeuwen R. The effects of limestone powder particle size on the mechanical properties and the life cycle assessment of concrete. Ph. D. Thesis, Texas State University, USA, 2016.
66 Ergün A. Construction and Building Materials, 2011, 25(2), 806.
67 Ashish D K, Verma S K, Kumar R, et al. Advances in Concrete Construction, 2016, 4(2), 145.
68 Khodabakhshian A, Ghalehnovi M, De Brito J, et al. Journal of Cleaner Production, 2018, 170, 42.
69 Zhang J T, Cai D S, Wang T K, et al. Annales De Chimie Science Des Materiaux, 2018, 42(3), 347.
70 Ashish D K. Journal of Building Engineering, 2018, 15, 236.
71 Siddique Z, Bhargava R, Ansari M M, et al. In:Proceedings of the International Conference on Sustainable Materials and Structures for Civil Infrastructures. Madhya Pradesh, 2019, pp.2158.
72 Merah A, Krobba B. Journal of Silicate Based & Composite Materials, 2021, 73(1), 17.
73 Parmar S, Das S K. Structural Concrete, 2021, 22, E514.
74 Majeed M, Khitab A, Anwar W, et al. Civil Engineering Journal, 2021, 7(1), 59.
75 Belouadah M, Rahmouni Z E, Tebbal N, et al. Annales De Chimie-Science Des Materiaux, 2021, 45(5), 361.
76 Ahmad J, Zaid O, Siddique M S, et al. Materials Research Express, 2021, 8(7), 075505.
77 Vaidevi C. Indian Journal of Engineering, 2013, 4(9), 14.
78 Rana A, Kalla P, Csetenyi L J. Journal of Cleaner Production, 2015, 94, 304.
79 Sounthararajan V M, Sivakumar A. ARPN Journal of Engineering and Applied Sciences, 2013, 8(4), 260.
80 Han-Young M, Ho-Seop J. Journal of the Korea Concrete Institute, 2004, 16(6), 859.
81 Ahmed A, Abdurrahman A, Mohammed Z. Al-Rafidain Engineering Journal, 2009, 18(5), 24.
82 Wang Y L, Wang W D, Guan X M. Advanced Materials Research, 2011, 163, 1419.
83 Diab A M, Abd Elmoaty M, Aly A A. Alexandria Engineering Journal, 2016, 55(2), 1465.
84 Wang Q, Yang J, Chen H H. Materials and Structures, 2017, 50, 1.
85 Basit A, Khan M A, Ahmed I, et al. In:1st International Conference on Advances in Engineering and Technology. Baleli, 2018, pp.1757.
86 Sun J W, Chen Z H. Powder Technology, 2018, 338, 725.
87 Jin W Z, Jiang L H, Han L, et al. Structural Concrete, 2021, 22, E745.
88 Huang Z Y, Sookree E W, Mohamoud A H, et al. KSCE Journal of Civil Engineering, 2021, 25, 2501.
89 Wu Y Z, Tang P, Lv H L, et al. Construction and Building Materials, 2023, 369, 130515.
90 Talah A, Kharchi F, Chaid R. Procedia Engineering, 2015, 114, 685.
91 Ahmad I, Shen D J, Khan K A, et al. Magazine of Concrete Research, 2022, 74(24), 1280.
92 Raghunath P N, Suguna K, Karthick J, et al. Scientia Iranica, 2019, 26(6), 3159.
93 Bheel N, Benjeddou O, Almujibah H R, et al. Heliyon, 2023, 9(4), e15029.
94 Boukhelkhal A, Azzouz L, Belaïdi A S E, et al. Journal of Adhesion Science and Technology, 2016, 30(22), 2405.
95 Ali A, Hussain Z, Akbar M, et al. Advances in Materials Science and Engineering, 2022, 2022(1), 9553382.
96 Celik K, Meral C, Gursel A P, et al. Cement and Concrete Composites, 2015, 56, 59.
97 Daoud O M A, Mahgoub O S. FES Journal of Engineering Sciences, 2020, 9(2), 71.
98 Alyamaç K E, Aydin A B. KSCE Journal of Civil Engineering, 2015, 19(7), 2208.
99 Memon M J, Jhatial A A, Rid Z A, et al. Engineering, Technology & Applied Science Research, 2019, 9(3), 4105.
100 Singh S, Tiwari A, Nagar R, et al. Procedia Environmental Sciences, 2016, 35, 571.
101 Omar O M, Abd Elhameed G D, Sherif M A, et al. HBRC Journal, 2012, 8(3), 193.
102 Abbas Y, Djebien R, Toubal S N, et al. Journal of Applied Engineering Sciences, 2023, 13(2), 137.
103 Mahmood M S, Elahi A, Zaid O, et al. Case Studies in Construction Materials, 2023, 19, e02557.
104 Sharma N, Thakur M S, Kumar R, et al. Processes, 2022, 10(12), 2745.
105 Sharma N, Upadhya A, Thakur M S, et al. Advances in Materials Research, 2022, 11(1), 75.
106 Acikgenc U M. Structural Concrete, 2023, 24(2), 2009.
107 Khan K, Ahmad W, Amin M N, et al. Materials, 2022, 15(12), 4108.
108 Sharma N, Thakur M S, Sihag P, et al. Materials, 2022, 15(17), 5811.
109 Shamsabadi E A, Roshan N, Ali Hadigheh S, et al. Construction and Building Materials, 2022, 324, 126592.
110 Singh M, Choudhary P, Bedi A K, et al. Coatings, 2022, 13(1), 66.
111 Essam A, Mostafa S A, Khan M, et al. Construction and Building Materials, 2023, 409, 133845.
112 Sharma N, Thakur M S, Upadhya A, et al. Multiscale and Multidisciplinary Modeling, Experiments and Design, 2023, 6(1), 81.
113 Shi C J, Wang D H, Jia H F, et al. Journal of the Chinese Ceramic Society, 2017, 45(11), 1582 (in Chinese).
史才军, 王德辉, 贾煌飞, 等. 硅酸盐学报, 2017, 45(11), 1582.
114 Jin W, Jiang L, Han L, et al. Case Studies in Construction Materials, 2022, 17, e01322.
115 Wang D H, Shi C J, Jia H F. Materials Reports, 2018, 32(17), 2986 (in Chinese).
王德辉, 史才军, 贾煌飞. 材料导报, 2018, 32(17), 2986.
116 Singh M, Choudhary K, Srivastava A, et al. Journal of Building Engineering, 2017, 13, 87.
117 Khodabakhshian A, De Brito J, Ghalehnovi M, et al. Construction and Building Materials, 2018, 169, 237.
118 Wang B Y, Zhang J, Xiong J W, et al. Journal of Building Materials, 2023, 26(11), 1151 (in Chinese).
汪保印, 张洁, 熊金伟, 等. 建筑材料学报, 2023, 26(11), 1151.
119 General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Concrete with ground limestone:GB/T 30190-2013, Standards Press of China, China, 2013.
中华人民共和国国家质量监督检验检疫总局. 石灰石粉混凝土:GB/T 30190-2013, 中国标准出版社, 2013.
120 Minister of Housing and Urban-rural Development of the People’s Republic of China. Technical specification for applification of grounf limestone in comcrete:JGJ/T 318-2014, China Architecture & Building Press, China, 2014.
中华人民共和国住房和城乡建设部. 石灰石粉在混凝土中应用技术规程:JGJ/T 318-2014, 中国建筑工业出版社, 2014.
121 General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Limestone powder used for cement, mortar and concrete:GB/T 35164-2017, Standards Press of China, China, 2017.
中华人民共和国国家质量监督检验检疫总局. 用于水泥、砂浆和混凝土中的石灰石粉:GB/T 35164-2017, 中国标准出版社, 2017.
122 China Association for Engineering Construction Standardization. Technical specification for application of stone powder in concrete:T/CECS 645-2019, China Planning Press, China, 2019.
中国工程建设标准化协会. 石粉在混凝土中应用技术规程:T/CECS 645-2019, 中国计划出版社, 2019.
123 BS 7979:2016, Specification for Limestone Fines for Use with Portland Cement, 2016.
124 Karalar M, Özkılıç Y O, Aksoylu C, et al. Frontiers in Materials, 2022, 9, 1068791.
125 Başaran B, Aksoylu C, Özkılıç Y O, et al. Structures, 2023, 54, 1090.
126 Coo M, Pheeraphan T. Construction and Building Materials, 2016, 120, 581.
[1] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[2] 朱作祥, 骆祚森, 李建林, 邓华锋, 王乐华. 含水状态对硅质胶结砂岩抗拉特性的影响及颗粒流模拟[J]. 材料导报, 2025, 39(9): 24010198-9.
[3] 乐祥和, 张晓红, 乔英杰, 白成英, 王晓东, 李茂源, 陈为为. 石墨烯改性热固性树脂复合材料研究进展[J]. 材料导报, 2025, 39(9): 24040177-9.
[4] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[5] 王艳, 常天风, 杨子凡, 李伊岚. 超高性能混凝土-普通混凝土界面粘结性能研究[J]. 材料导报, 2025, 39(7): 24020129-6.
[6] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[7] 李克亮, 杜建, 陈爱玖, 韩小燕. 污水管道混凝土微生物腐蚀机理、影响因素和模拟试验方法综述[J]. 材料导报, 2025, 39(7): 23120043-11.
[8] 姜彦杰, 刘浩天, 刘海峰, 车佳玲, 杨维武. 硫酸盐冻融后沙漠砂混凝土单轴受压力学性能试验研究[J]. 材料导报, 2025, 39(7): 23110222-11.
[9] 杜刚, 李亮, 王子晨, 吴俊, 杜修力. 碳纤维混凝土高温冷却后动态压缩性能试验研究[J]. 材料导报, 2025, 39(6): 24010268-6.
[10] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[11] 易忠来, 纪文骁, 李化建, 杨志强, 温浩, 王振. 混凝土稳健性评价方法及提升措施研究进展[J]. 材料导报, 2025, 39(6): 24020022-12.
[12] 王耀, 郑新颜, 黄伟, 吴应雄, 黄雅莹, 张恒春, 张峰. 超高性能混凝土-花岗岩石材界面的抗剪性能研究[J]. 材料导报, 2025, 39(6): 24010107-10.
[13] 潘杜, 牛荻涛, 罗大明. 海水海砂混凝土中低合金钢筋钝化膜结构及厚度预测模型[J]. 材料导报, 2025, 39(6): 23120173-8.
[14] 牛荻涛, 杨瑞希, 吕瑶, 孙杏杏, 曹志远, 吴鸿渠. SO2和CO2共同作用下混凝土性能劣化研究[J]. 材料导报, 2025, 39(5): 23120166-7.
[15] 曾鲁平, 乔敏, 赵爽, 王伟, 陈俊松, 朱伯淞, 冉千平, 洪锦祥. 乙烯-醋酸乙烯酯共聚物对喷射混凝土力学强度、渗透性能及水化微观
结构的影响
[J]. 材料导报, 2025, 39(5): 24020003-9.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed