Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 24010125-10    https://doi.org/10.11896/cldb.24010125
  无机非金属及其复合材料 |
路面基层混合料煤矸石掺配方式及耐久性试验研究
汪德才1,*, 魏家伟1, 胡磊2, 张庆3,4, 董是5, 杨澜1, 成凯1
1 华北水利水电大学土木与交通学院,郑州 450045
2 郑州大学水利与交通学院,郑州 450001
3 河南师范大学绿色化学介质与反应教育部重点实验室,河南 新乡 453007
4 河南省高远公路养护技术有限公司公路养护装备国家工程研究中心,河南 新乡453000
5 长安大学运输工程学院,西安 710064
Experimental Study on Coal Gangue Mixing Method and Durability of Pavement Base Mixture
WANG Decai1,*, WEI Jiawei1, HU Lei2, ZHANG Qing3,4, DONG Shi5, YANG Lan1, CHENG Kai1
1 School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
2 School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China
3 Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang 453007, Henan, China
4 National Engineering Research Center of Highway Maintenance Equipment, Henan Gaoyuan Highway Maintenance Technology Company Limited, Xinxiang 453000, Henan, China
5 School of Transportation Engineering, Chang’ an University, Xi’an 710064, China
下载:  全 文 ( PDF ) ( 40219KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 煤矸石作为筑路材料应用于公路基层是固废绿色高值化利用的一种有效方式。针对豫北地区生产的掘进煤矸石材料,研究了煤矸石与碎石粗细集料间的差异性;通过重复冻融试验、干缩试验、四点弯曲疲劳等试验分析了煤矸石比例替换和粒径替换天然碎石两种方式对煤矸石混合料耐久性能的影响;基于XRD物相分析试验、SEM微观试验探讨了水泥稳定煤矸石-碎石混合料强度形成与失效的内部作用机制。结果表明:比例替换后的四组混合料相较于100%掘进煤矸石(TCG)的抗压强度,分别提升了7.7%、37.8%、45.6%和61.8%,强度损失率和干缩系数排序为100%碎石(LF)<40%TCG<60%TCG<100%TCG,而冻融残留强度比(BDR)和疲劳寿命的排序则与之相反;混合料中煤矸石含量越高,其强度降幅越大,抗冻性能越弱,疲劳寿命降幅更大,干缩应变越大。粒径替换方式下,替换粗、细集料均可增大混合料的抗压强度和BDR值,降低强度损失率,混合料疲劳寿命排序为100%TCG<T4<T1~2<T1~3<100%LF,而T1~2、T1~3的干缩应变最小,T4的干缩应变最大。煤矸石细集料对混合料的干缩起到了增益作用,更显著地影响混合料的抗冻性能,9.5~31.5 mm集料对混合料的强度影响更显著,而4.75~9.5 mm集料对混合料的强度、抗冻性能、疲劳寿命影响较小。粒径替换制备的混合料在低应力比下具备更优异的疲劳性能,而比例替换制备的混合料更适用于高应力比场景。煤矸石集料增加会抑制凝胶的产生,延缓水化反应,40%TCG和T4产生较多的水化硅酸钙(C-S-H)凝胶和钙钒石(AFt)晶体相胶结物,形成了致密的凝胶网络,具有更强的密实性和整体性。推荐40%TCG作为高等级公路基层的掺配方式。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪德才
魏家伟
胡磊
张庆
董是
杨澜
成凯
关键词:  公路基层  掘进煤矸石  掺配方式  四点弯曲疲劳  微观分析    
Abstract: The application of coal gangue as road construction material in highway base is an effective way of green and high-value utilization of solid waste. In view of the tunneling coal gangue materials produced in northern Henan, the difference between coarse and fine aggregates of coal gangue and gravel was studied. Through repeated freeze-thaw test, dry shrinkage test and four-point bending fatigue test, the influence of coal gangue ratio replacement and particle size replacement of natural gravel on the durability of coal gangue mixture was analyzed. Based on XRD phase analysis test and SEM microscopic test, the internal mechanism of strength formation and failure of cement stabilized coal crushing mixture was discussed. The results show that the compressive strength of the four groups of mixtures after proportional replacement is 7.7%, 37.8%, 45.6% and 61.8% higher than that of 100%TCG, respectively. The order of strength loss rate and dry shrinkage coefficient is 100%LF<40%TCG<60%TCG <100%TCG, while the order of BDR value and fatigue life is opposite. The higher the content of coal gangue in the mixture, the greater the decrease in strength, the weaker the frost resistance, the greater the decrease in fatigue life, the greater the drying shrinkage. Under the particle size replacement method, replacing coarse and fine aggregates can increase the compressive strength and BDR value of the mixture and reduce the strength loss rate. The fatigue life of the mixture is ranked as 100%TCG <T4<T1~2<T1~3<100%LF, while the dry shrin-kage strain of T1~2 and T1~3 is the smallest, and the dry shrinkage strain of T4 is the largest. Coal gangue fine aggregate has a gain effect on the dry shrinkage of the mixture, and more significantly affects the frost resistance of the mixture. The aggregate of 9.5—31.5 mm has more significant effect on the strength of the mixture, while the aggregate of 4.7—9.5 mm has less effect on the strength, frost resistance and fatigue life of the mixture. The mixture prepared by particle size replacement has better fatigue performance at low stress ratio, while the mixture prepared by proportional replacement is more suitable for high stress ratio scenarios. The increase of coal gangue aggregate will inhibit the production of gel and delay hydration reaction. 40%TCG and T4 produced more C-S-H gel and AFt crystal phase cementation, forming a dense gel network with stronger compactness and integrity. It is recommended that 40%TCG is used as the blending method of high-grade highway base.
Key words:  pavement base    tunneling coal gangue    blending mode    four-point bending fatigue    micro-analysis
发布日期:  2025-05-29
ZTFLH:  U414  
基金资助: 国家自然科学基金 (52108395);河南省重点研发与推广项目 (222102320407;252102240033)
通讯作者:  *汪德才,工学博士,华北水利水电大学土木与交通学院副教授、硕士研究生导师。目前主要研究方向为路面结构与材料、绿色智慧化道路技术。wangdecai@ncwu.edu.cn   
引用本文:    
汪德才, 魏家伟, 胡磊, 张庆, 董是, 杨澜, 成凯. 路面基层混合料煤矸石掺配方式及耐久性试验研究[J]. 材料导报, 2025, 39(11): 24010125-10.
WANG Decai, WEI Jiawei, HU Lei, ZHANG Qing, DONG Shi, YANG Lan, CHENG Kai. Experimental Study on Coal Gangue Mixing Method and Durability of Pavement Base Mixture. Materials Reports, 2025, 39(11): 24010125-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010125  或          https://www.mater-rep.com/CN/Y2025/V39/I11/24010125
1 Liu Z, Duan K R, Zhou M, et al. Materials Reports, 2024, 38(10), 88 (in Chinese).
刘泽, 段开瑞, 周梅, 等. 材料导报, 2024, 38(10), 88.
2 Li J Y, Wang J M. Journal of Cleaner Production, 2019, 239, 117946.
3 Huang X M, Rao Y L, Du K. Mining Safety & Environmental Protection, 2023, 50(6), 92(in Chinese).
黄学满, 饶吉来, 杜凯. 矿业安全与环保, 2023, 50(6), 92.
4 Tian Y R, Zhang X R, Liu J F, et al. Science & Technology Review, 2020, 38(22), 104 (in Chinese).
田怡然, 张晓然, 刘俊峰, 等. 科技导报, 2020, 38(22), 104.
5 Niu X L. Research & Application of Building Materials, 2013 (1), 17 (in Chinese).
牛小玲. 建材技术与应用, 2013 (1), 17.
6 Zhu X L, Zhang M, Wang D M, et al. Metal Mine, 2022(1), 21 (in Chinese).
祝小靓, 张明, 王栋民, 等. 金属矿山, 2022(1), 21.
7 Gao J. Study on coal gangue road performance in Bayan Gaolle mining area. Master’s Thesis, Inner Mongolia University of Technology, China, 2019 (in Chinese).
高健. 巴彦高勒矿区煤矸石路用性能研究. 硕士学位论文, 内蒙古工业大学, 2019.
8 Wang L, Sun L. Journal of Environmental Protection and Ecology, 2022, 23(3), 991.
9 Guo Y X, Li C, Li M. International Journal of Coal Preparation and Utilization, 2022, 42(3), 580.
10 Li Z, Guo T, Chen Y, et al. Materials Research Express, 2021, 8(12), 125502.
11 Guan J, Lu M, Yao X, et al. Crystals, 2021, 11(8), 993.
12 Liu N C. Study on road performance of coal gangue in cement stabilized macadam base. Master’s Thesis, Ningxia University, China, 2022 (in Chinese).
刘乃成. 煤矸石在水泥稳定碎石基层中的路用性能研究. 硕士学位论文, 宁夏大学, 2022.
13 Li M, Li C, Guo Y X, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(9), 2895 (in Chinese).
李明, 李昶, 郭雨鑫, 等. 硅酸盐通报, 2019, 38(9), 2895.
14 Wu H X. Research of coal gangue in pavement base onthe applied technology. Master’s Thesis, Beijing University of Technology, China, 2016 (in Chinese).
武昊翔. 煤矸石在路面基层的应用技术研究. 硕士学位论文, 北京工业大学, 2016.
15 Ji X P, Cao H L, Liu L Q. Journal of Building Materials, 2016, 19(2), 342 (in Chinese).
纪小平, 曹海利, 刘陵庆. 建筑材料学报, 2016, 19(2), 342.
16 Su Z, Li X, Zhang Q. Journal of Cleaner Production, 2022, 363, 132408.
17 Zhu Y Y, Wang A G, Sun D S, et al. Journal of China Coal Society, 2021, 46(11), 3657 (in Chinese).
朱愿愿, 王爱国, 孙道胜, 等. 煤炭学报, 2021, 46(11), 3657.
18 Liu D, Li L H, Cui H J, et al. Journal of Tongji University (Natural Science), 2015, 43(3), 405 (in Chinese).
刘栋, 李立寒, 崔华杰. 同济大学学报(自然科学版), 2015, 43(3), 405.
19 Chen J X, Jia J Q, Zhang L H, et al. Ksce Journal of Civil Engineering, 2022, 26(8), 3520.
20 Ma L L, Zhang X, Liu F, et al. Journal of Building Materials, 2023, 26(7), 762 (in Chinese).
马璐璐, 张翛, 刘芳, 等. 建筑材料学报, 2023, 26(7), 762.
21 Duan X M. Study on the micro-structure and physical-mechanical performance of concrete with coal gangue as aggregate. Master’s Thesis, China University of Mining and Technology, China, 2014 (in Chinese).
段晓牧. 煤矸石集料混凝土的微观结构与物理力学性能研究. 硕士学位论文, 中国矿业大学, 2014.
22 Yu L, Xia J, Xia Z, et al. Construction and Building Materials, 2022, 338, 127626.
[1] 姜彦杰, 刘浩天, 刘海峰, 车佳玲, 杨维武. 硫酸盐冻融后沙漠砂混凝土单轴受压力学性能试验研究[J]. 材料导报, 2025, 39(7): 23110222-11.
[2] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[3] 胡家宇, 徐菲, 钱文勋, 肖怀前, 葛津宇, 李嘉明. 涂覆时间对聚合物水泥基钢筋涂层粘接性能的影响机理[J]. 材料导报, 2024, 38(17): 22060053-4.
[4] 边晨, 郭君渊, 肖建庄, 赵长军. 纳米偏高岭土及细骨料对UHPC力学性能的影响[J]. 材料导报, 2023, 37(23): 22070261-5.
[5] 郭鹏, 冯云霞, 孟献春, 孟建玮, 潘维霖, 高云, 刘洋. 蓄盐融雪除冰剂微观分析及对混合料水稳定性的影响[J]. 材料导报, 2020, 34(6): 6062-6065.
[6] 雷蕾, 何晓聪, 高爱凤, 赵得锁. 粘接剂对1420铝锂合金压印接头疲劳性能的影响[J]. 材料导报, 2018, 32(16): 2809-2815.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed