Study on the Microstructure and Mechanical Properties of As-extruded Mg-9Al-0.1Mn-xCa Alloys for Rail Transit
JING Xuerui1, WU Xiong1, WANG Senwei1, XIAO Hui1 , SHE Jia1,2,*, TANG Aitao1,2,*, WANG Jingfeng1,2
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China 2 National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
Abstract: Magnesium alloys have become one of the most promising structural materials due to their superiority characteristics such as low density, high specific strength and stiffness, high thermal conductivity, high damping and good electromagnetic shielding performance. Mg-Al-Mn-Ca alloys have enormous development potential in the rail transportation owing to their excellent mechanical properties, formability, and flame retardancy. However, current researches on Mg-Al-Mn-Ca alloys mainly focus on micro-alloying or low Al composition alloys. For this reason, this work investigated the effect of Ca element on the microstructure and mechanical properties of high Al composition alloys. According to the results of optical microscopy (OM), X-ray diffractometer (XRD), scanning electron microscope (SEM), electron backscatter diffraction (EBSD) and mechanical properties testing, the addition of Ca element can effectively refine the grain size and weaken the basal texture. In addition, the strength and plasticity of the alloy are also synchronously improved. When the Ca content is 0.5wt%, the alloy exhibits the best comprehensive mechanical properties, with tensile yield strength, ultimate tensile strength, compressive yield strength, and elongation of 234 MPa, 343 MPa, 203 MPa, and 14.9%, respectively.
1 Ding W J, Yuan G Y. Nonferrous Metals Processing, 2002, 31(3), 27(in Chinese). 丁文江, 袁广银. 有色金属加工, 2002, 31(3), 27. 2 Luo A A. Journal of Magnesium and Alloys, 2013, 1(1), 2. 3 Su K, Jin X H, Liu Y Q, et al. Electric Drive for Locomotives, 2022(2), 82(in Chinese). 苏柯, 金希红, 刘永强, 等. 机车电传动, 2022(2), 82. 4 Jayasathyakawin S, Ravichandran M, Baskar N, et al. Materials Today:Proceedings, 2020, 27, 909. 5 Ninomiya R, Ojiro T, Kubota K. Acta Metallurgica et Materialia, 1995 43(2), 669. 6 Han L, Hu H, Northwood D O. Materials Letters, 2008, 62(3), 381. 7 Ding H, Shi X, Wang Y, et al. Materials Science & Engineering A, 2015, 645, 1501693. 8 Bhattacharyya J J, Sasaki T T, Nakata T, et al. Acta Materialia, 2019, 171, 231. 9 Nakata T, Xu C, Matsumoto Y, et al. Materials Science & Engineering A, 2016, 673, 443. 10 Nakata T, Xu C, Ajima R, et al. Materials Science & Engineering A, 2018, 712, 12. 11 Che B, Lu L W, Wu M Y, et al. Materials Reports, 2021, 35(21), 21249(in Chinese). 车波, 卢立伟, 吴木义, 等. 材料导报, 2021, 35(21), 21249. 12 Sakai T, Belyakov A, Kaibyshev R, et al. Progress in Materials Science, 2014, 60, 130. 13 Li Z T. Microstructure modification on second phases and strength-ductility optimization in wrought Mg-Al-Ca-Mn alloys. Ph. D. Thesis, Harbin Institute of Technology, China, 2020(in Chinese). 李子彤. Mg-Al-Ca-Mn 变形镁合金的第二相调控和强塑性优化. 博士学位论文, 哈尔滨工业大学, 2020. 14 Li Z, Wang H, Huang H. Journal of Alloys and Compounds, 2019, 818, 152848. 15 Yu D, Zhang D, Sun J, et al. Journal of Alloys and Compounds, 2017, 690, 553. 16 Jung J G, Park S H, Yu H, et al. Scripta Materialia, 2014, 93, 8. 17 Huang K, Marthinsen K, Zhao Q, et al. Progress in Materials Science, 2017, 92, 284. 18 Wang Y N, Huang J C. Acta Materialia, 2007, 55(3), 897. 19 Sasaki T T, Ju J D, Hono K, et al. Scripta Materialia, 2009, 61(1), 80. 20 Xu S W, Oh-Ishi K, Kamado S, et al. Scripta Materialia, 2011, 65(3), 269. 21 Du Y Z, Qiao G X, Zheng W S, et al. Materials Science & Engineering A, 2015, 620, 164. 22 Jia S W, Zhang Z, Wang W, et al. Materials Reports, 2015, 29(23), 114(in Chinese). 贾少伟, 张郑, 王文, 等. 材料导报, 2015, 29(23), 114. 23 Sasaki T T, Elsayed F R, Nakata T, et al. Acta Materialia, 2015, 99, 176. 24 Barnett M R. Scripta Materialia, 2008, 59(7), 696.