Please wait a minute...
材料导报  2025, Vol. 39 Issue (18): 24070127-6    https://doi.org/10.11896/cldb.24070127
  金属与金属基复合材料 |
轨交用Mg-9Al-0.1Mn-xCa挤压合金的组织与力学性能研究
敬学锐1, 吴雄1, 王森巍1, 肖辉1, 佘加1,2,*, 汤爱涛1,2,*, 王敬丰1,2
1 重庆大学材料科学与工程学院,重庆 400045
2 重庆大学国家镁合金材料工程技术研究中心,重庆 400044
Study on the Microstructure and Mechanical Properties of As-extruded Mg-9Al-0.1Mn-xCa Alloys for Rail Transit
JING Xuerui1, WU Xiong1, WANG Senwei1, XIAO Hui1 , SHE Jia1,2,*, TANG Aitao1,2,*, WANG Jingfeng1,2
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China
2 National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
下载:  全 文 ( PDF ) ( 43715KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁合金密度低,比强度、比刚度高,导热性优异,阻尼性以及电磁屏蔽性能良好,在结构材料方面极具应用前景。其中Mg-Al-Mn-Ca系合金由于良好的室温力学性能、成形能力和阻燃性能,在轨道交通领域表现出广阔的发展前景。然而,目前有关Mg-Al-Mn-Ca系合金的研究主要集中于微合金化或低Al成分合金,有鉴于此,本工作研究了Ca元素对高Al成分合金微观组织和力学性能的影响。光学显微镜(OM)、X射线衍射仪(XRD)、扫描电镜(SEM)、电子背散射衍射(EBSD)和力学性能测试结果表明,Ca元素的添加能够有效细化晶粒并弱化基面织构,此外,合金的强度和塑性也得到了同步提升。当Ca含量为0.5%(质量分数)时,合金具有最佳的综合力学性能,拉伸屈服强度、抗拉强度、压缩屈服强度分别为234 MPa、343 MPa、203 MPa,延伸率为14.9%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
敬学锐
吴雄
王森巍
肖辉
佘加
汤爱涛
王敬丰
关键词:  Mg-Al-Mn-Ca系合金  微观组织  力学性能  轨道交通    
Abstract: Magnesium alloys have become one of the most promising structural materials due to their superiority characteristics such as low density, high specific strength and stiffness, high thermal conductivity, high damping and good electromagnetic shielding performance. Mg-Al-Mn-Ca alloys have enormous development potential in the rail transportation owing to their excellent mechanical properties, formability, and flame retardancy. However, current researches on Mg-Al-Mn-Ca alloys mainly focus on micro-alloying or low Al composition alloys. For this reason, this work investigated the effect of Ca element on the microstructure and mechanical properties of high Al composition alloys. According to the results of optical microscopy (OM), X-ray diffractometer (XRD), scanning electron microscope (SEM), electron backscatter diffraction (EBSD) and mechanical properties testing, the addition of Ca element can effectively refine the grain size and weaken the basal texture. In addition, the strength and plasticity of the alloy are also synchronously improved. When the Ca content is 0.5wt%, the alloy exhibits the best comprehensive mechanical properties, with tensile yield strength, ultimate tensile strength, compressive yield strength, and elongation of 234 MPa, 343 MPa, 203 MPa, and 14.9%, respectively.
Key words:  Mg-Al-Mn-Ca alloys    microstructure    mechanical property    rail transportation
出版日期:  2025-09-25      发布日期:  2025-09-11
ZTFLH:  TG379  
基金资助: 广东省重点研发计划(2020B0301030006)
通讯作者:  *佘加,博士,重庆大学材料科学与工程学院副教授、硕士研究生导师,国家镁合金材料工程技术研究中心骨干研究人员。研究方向为生物镁合金材料、高性能变形镁合金材料设计与先进加工技术。jiashe@foxmail.com;
汤爱涛,博士,重庆大学材料科学与工程学院教授、博士研究生导师,国家镁合金材料工程技术研究中心骨干研究人员。目前主要从事轻合金组织与性能、基于数据驱动技术的材料设计、金属基复合材料和辐照损伤的计算模拟等方面的研究。tat@cqu.edu.cn   
作者简介:  敬学锐,重庆大学材料科学与工程学院博士研究生,在汤爱涛教授和佘加副教授的指导下进行研究。目前主要研究领域为轨交用Mg-Al-Ca系合金组织性能与成形性。
引用本文:    
敬学锐, 吴雄, 王森巍, 肖辉, 佘加, 汤爱涛, 王敬丰. 轨交用Mg-9Al-0.1Mn-xCa挤压合金的组织与力学性能研究[J]. 材料导报, 2025, 39(18): 24070127-6.
JING Xuerui, WU Xiong, WANG Senwei, XIAO Hui , SHE Jia, TANG Aitao, WANG Jingfeng. Study on the Microstructure and Mechanical Properties of As-extruded Mg-9Al-0.1Mn-xCa Alloys for Rail Transit. Materials Reports, 2025, 39(18): 24070127-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070127  或          https://www.mater-rep.com/CN/Y2025/V39/I18/24070127
1 Ding W J, Yuan G Y. Nonferrous Metals Processing, 2002, 31(3), 27(in Chinese).
丁文江, 袁广银. 有色金属加工, 2002, 31(3), 27.
2 Luo A A. Journal of Magnesium and Alloys, 2013, 1(1), 2.
3 Su K, Jin X H, Liu Y Q, et al. Electric Drive for Locomotives, 2022(2), 82(in Chinese).
苏柯, 金希红, 刘永强, 等. 机车电传动, 2022(2), 82.
4 Jayasathyakawin S, Ravichandran M, Baskar N, et al. Materials Today:Proceedings, 2020, 27, 909.
5 Ninomiya R, Ojiro T, Kubota K. Acta Metallurgica et Materialia, 1995 43(2), 669.
6 Han L, Hu H, Northwood D O. Materials Letters, 2008, 62(3), 381.
7 Ding H, Shi X, Wang Y, et al. Materials Science & Engineering A, 2015, 645, 1501693.
8 Bhattacharyya J J, Sasaki T T, Nakata T, et al. Acta Materialia, 2019, 171, 231.
9 Nakata T, Xu C, Matsumoto Y, et al. Materials Science & Engineering A, 2016, 673, 443.
10 Nakata T, Xu C, Ajima R, et al. Materials Science & Engineering A, 2018, 712, 12.
11 Che B, Lu L W, Wu M Y, et al. Materials Reports, 2021, 35(21), 21249(in Chinese).
车波, 卢立伟, 吴木义, 等. 材料导报, 2021, 35(21), 21249.
12 Sakai T, Belyakov A, Kaibyshev R, et al. Progress in Materials Science, 2014, 60, 130.
13 Li Z T. Microstructure modification on second phases and strength-ductility optimization in wrought Mg-Al-Ca-Mn alloys. Ph. D. Thesis, Harbin Institute of Technology, China, 2020(in Chinese).
李子彤. Mg-Al-Ca-Mn 变形镁合金的第二相调控和强塑性优化. 博士学位论文, 哈尔滨工业大学, 2020.
14 Li Z, Wang H, Huang H. Journal of Alloys and Compounds, 2019, 818, 152848.
15 Yu D, Zhang D, Sun J, et al. Journal of Alloys and Compounds, 2017, 690, 553.
16 Jung J G, Park S H, Yu H, et al. Scripta Materialia, 2014, 93, 8.
17 Huang K, Marthinsen K, Zhao Q, et al. Progress in Materials Science, 2017, 92, 284.
18 Wang Y N, Huang J C. Acta Materialia, 2007, 55(3), 897.
19 Sasaki T T, Ju J D, Hono K, et al. Scripta Materialia, 2009, 61(1), 80.
20 Xu S W, Oh-Ishi K, Kamado S, et al. Scripta Materialia, 2011, 65(3), 269.
21 Du Y Z, Qiao G X, Zheng W S, et al. Materials Science & Engineering A, 2015, 620, 164.
22 Jia S W, Zhang Z, Wang W, et al. Materials Reports, 2015, 29(23), 114(in Chinese).
贾少伟, 张郑, 王文, 等. 材料导报, 2015, 29(23), 114.
23 Sasaki T T, Elsayed F R, Nakata T, et al. Acta Materialia, 2015, 99, 176.
24 Barnett M R. Scripta Materialia, 2008, 59(7), 696.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed