Please wait a minute...
材料导报  2025, Vol. 39 Issue (18): 24070131-7    https://doi.org/10.11896/cldb.24070131
  金属与金属基复合材料 |
L245NS钢在不同O2含量的CO2/H2S/O2体系中的腐蚀行为探究
周飞龙1, 唐鑫2,*, 郭磊1, 廖柯熹3, 冷吉辉3
1 国家管网集团西气东输科技数字中心,上海 200131
2 国家管网集团西气东输苏浙沪输气分公司,南京 210001
3 西南石油大学石油与天然气工程学院,成都 610500
Study on Corrosion Behavior of L245NS Steel in CO2/H2S/O2 Systems with Different O2 Contents
ZHOU Feilong1, TANG Xin2,*, GUO Lei1, LIAO Kexi3, LENG Jihui3
1 Science and Figure Center, West-East Gas Transmission, National Pipe Network Group, Shanghai 200131, China
2 Jiangsu, Zhejiang, Shanghai Branch, West-East Gas Transmission, National Pipe Network Group, Nanjing 210001, China
3 School of Petroleum and Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China
下载:  全 文 ( PDF ) ( 35869KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 某油田H区块稠油采用注多元热流体驱替方式开采,其采出物中含有CO2、H2S及O2等气体,流经集输管道时会形成CO2/H2S/O2三元腐蚀体系,且温度较高,管道系统内腐蚀问题严重。因此,针对现场采出物O2含量变化大的特点,采用高温高压反应釜开展了L245NS钢在不同O2含量(0%、1%、2%、3%)下的腐蚀行为研究,并分析了腐蚀产物的物相组成及微观形貌。结果表明:均匀腐蚀速率随着O2含量的提高呈增长趋势,O2参与了阴极去极化反应,同时氧化Fe2+生成疏松多孔的高价铁氧化物,抑制FeCO3的形成;O2与H2S间的交互作用增强,生成的S单质继续参与腐蚀反应,产物保护性能下降。局部腐蚀速率随着O2含量的提高呈先增长后减小的趋势,O2含量为2%时有极大值,高O2含量抑制局部腐蚀。基于实验结果,集输管道选材时可选用更耐腐蚀的合金钢,若将该区块O2含量控制在1%以下,可最大程度地减小钢材腐蚀。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周飞龙
唐鑫
郭磊
廖柯熹
冷吉辉
关键词:  O2含量  CO2/H2S/O2体系  L245NS钢  腐蚀机理    
Abstract: Tight oil in Block H of an oilfield is extracted by injecting multiple thermal fluids, and the extract contains CO2, H2S and O2, etc. The high-temperature mixed gas flow into the gathering and transportation pipeline forms a CO2/H2S/O2 corrosion system, and the corrosion problem of the pipeline system is serious. Therefore, in view of the characteristics of large variation of O2 content in the field products, the corrosion behavior of L245NS steel at different O2 content (0%, 1%, 2%, 3%) was studied in a high temperature and high pressure reactor, and the composition and microstructure of the corrosion products were analyzed. The results show that the uniform corrosion rate increases with the increase of O2 content. The O2 participates in the cathodic depolarization reaction, and oxidizes Fe2+ to form loose and porous high valence oxides of Fe, which inhibits the formation of FeCO3. At the same time, the interaction between O2 and H2S was enhanced, and the generated S element continued to participate in the corrosion reaction, resulting in the decline of product protection performance. The results of local corrosion rate showed that it increased first and then decreased with the increase of O2 content. When the O2 content is 2%, it has a maximum value, and when the O2 content is high, it can inhibit local corrosion. Based on the experimental results, more corrosion-resistant alloy steel can be selected for the selection of gathering and transmission pipeline materials. If the O2 content of the produced product is controlled below 1%, the corrosion of steel can be minimized.
Key words:  O2 content    CO2/H2S/O2 system    L245NS steel    corrosion mechanism
出版日期:  2025-09-25      发布日期:  2025-09-11
ZTFLH:  TE88  
通讯作者:  *唐鑫,硕士,国家管网集团西气东输苏浙沪输气分公司工程师。目前主要从事管道腐蚀与防护相关研究。1547381496@qq.com   
作者简介:  周飞龙,硕士,国家管网集团西气东输科技数字中心工程师。目前主要从事管道腐蚀与防护、管道完整性管理相关研究。
引用本文:    
周飞龙, 唐鑫, 郭磊, 廖柯熹, 冷吉辉. L245NS钢在不同O2含量的CO2/H2S/O2体系中的腐蚀行为探究[J]. 材料导报, 2025, 39(18): 24070131-7.
ZHOU Feilong, TANG Xin, GUO Lei, LIAO Kexi, LENG Jihui. Study on Corrosion Behavior of L245NS Steel in CO2/H2S/O2 Systems with Different O2 Contents. Materials Reports, 2025, 39(18): 24070131-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070131  或          https://www.mater-rep.com/CN/Y2025/V39/I18/24070131
1 Yuan S B, Sun J, Gong Y N, et al. Unconventional Oil and Gas, 2023, 10(2), 26(in Chinese).
袁士宝, 孙健, 宫宇宁, 等. 非常规油气, 2023, 10(2), 26.
2 Jiang Q, You H J, Pan J J, et al. Special Oil And Gas Reservoirs, 2020, 27(6), 30 (in Chinese).
蒋琪, 游红娟, 潘竟军, 等. 特种油气藏, 2020, 27(6), 30.
3 Liu Y G, Yang H L, Zhao L C, et al. In:Conference Record of the 2010 OTC. Houston, 2010.
4 Chen S D, Wu H, Wang C Y, et al. Oil and Gas and New Energy, 2022, 34(6), 101(in Chinese).
陈思锭, 吴浩, 王春燕, 等. 油气与新能源, 2022, 34(6), 101.
5 Qian H J. Research on internal corrosion and protection technology of heavy oil fire drive tail gas pipeline. Master's Thesis, Southwest Petroleum University, 2016 (in Chinese).
钱惠杰. 稠油火驱尾气管道内腐蚀与防护技术研究. 硕士学位论文, 西南石油大学, 2016.
6 Fang G X, Li Y D, Yang Y Z, et al. Materials Reports, 2023, 37(2), 428(in Chinese).
方国鑫, 李亚东, 杨雲智, 等. 材料导报, 2023, 37(2), 428.
7 Geng C L, Gu J, Xu Y M, et al. Materials Reports, 2011, 25(1), 119(in Chinese).
耿春雷, 顾军, 徐永模, 等. 材料导报, 2011, 25(1), 119.
8 Qiu Z C, Xiong C M, Chang Z L, et al. Petroleum Exploration and Development, 2012, 39(2), 256.
9 Okonkwo P C, Sliem M H, Shakoor R A, et al. Journal of Materials Engineering and Performance, 2017, 26, 377.
10 Liao K X, Qin M, Yang N, et al. Materials Chemistry & Physics, 2022, 292, 126838.
11 Hua Y, Barker R, Neville A. Applied Surface Science, 2015, 356, 499.
12 Lin X Q, Liu W, Wu F, et al. Applied Surface Science, 2015, 329, 104.
13 Zhu G Y, Li Y Y, Hou B S, et al. Journal of Materials Science & Technology, 2021, 88(29), 79.
14 Leng J H, Cheng Y, Liao K X, et al. Engineering Failure Analysis, 2022, 138, 106332.
15 Liu J, Yao D Z, Chen K, et al. Energies, 2023(16), 6119.
16 Shi S K, Feng W B, Sun C, et al. Journal of Physics:Conference Series, 2024, 2686, 012028.
17 Zhong X K, Wang Y R, Liang J J, et al. Materials, 2018, 11(9), 1635.
18 Sun J B, Sun C, Zhang G A, et al. Corrosion Science, 2016, 107, 31.
19 Sun C, Sun J B, Wang Y, et al. Corrosion Science, 2016, 107, 193.
20 Song X Q, Wang Y R, Liang J J, et al. Natural Gas And Oil, 2018, 36 (6), 92(in Chinese)
宋晓琴, 王彦然, 梁建军, 等. 天然气与石油, 2018, 36(6), 92.
21 Liao K X, Zhou F L, Song X Q, et al. Journal of Materials Engineering and Performance, 2020, 29(1), 155.
[1] 赵帅, 文绍牧, 廖柯熹, 秦林, 林冬, 高健. 无损检测技术在高含硫天然气管道中的应用研究进展[J]. 材料导报, 2025, 39(9): 24030169-9.
[2] 牛荻涛, 杨瑞希, 吕瑶, 孙杏杏, 曹志远, 吴鸿渠. SO2和CO2共同作用下混凝土性能劣化研究[J]. 材料导报, 2025, 39(5): 23120166-7.
[3] 韩炬, 王博超, 董东东, 马汝成, 龙海洋, 李晓硕, 王涛, 闫星辰. 激光选区熔化Inconel 625合金在酸性环境中的腐蚀机理研究[J]. 材料导报, 2025, 39(10): 24080164-6.
[4] 李雪伍, 杜少盟, 闫佳洋, 石甜. 铝合金超疏水表面制备方法及防腐应用研究现状[J]. 材料导报, 2024, 38(19): 23030276-10.
[5] 丁茜, 李海波, 廖俊生. 铀及铀铌合金在潮湿气氛中的腐蚀行为研究进展[J]. 材料导报, 2024, 38(12): 23030113-11.
[6] 郭晓宇, 温晓晶, 孟庆领, 王海良, 彭全敏, 张龙明. 腐蚀-荷载耦合作用下耐候桥梁钢及其焊接节点性能劣化研究进展[J]. 材料导报, 2023, 37(11): 22070019-8.
[7] 马良义, 台鹏飞, 王志光, 庞立龙, 申铁龙, 姚存峰, 李靖. FeCrAl合金的液态LBE/Pb腐蚀研究进展[J]. 材料导报, 2022, 36(7): 20100178-6.
[8] 孙有美, 赵全成, 李茜, 王玲, 佘祖新, 王长朋. FN04Mo在七种典型大气环境下的力学性能变化规律及腐蚀机理[J]. 材料导报, 2021, 35(18): 18182-18189.
[9] 徐金勇, 吴庆丹, 魏新龙, 肖金坤, 张超. 电弧喷涂耐海水腐蚀金属涂层的研究进展[J]. 材料导报, 2020, 34(13): 13155-13159.
[10] 曹琛, 郑山锁, 胡卫兵, 张晓辉, 刘毅. 大气环境腐蚀下钢结构力学性能研究综述[J]. 材料导报, 2020, 34(11): 11162-11170.
[11] 曹琛, 郑山锁, 胡卫兵. 酸雨环境下混凝土结构性能研究综述[J]. 材料导报, 2019, 33(11): 1869-1874.
[12] 高礼雄,丁汝茜,姚燕,荣辉,王海良,张磊. 混凝土的微生物腐蚀:机理、影响因素、评价指标及防护技术[J]. 《材料导报》期刊社, 2018, 32(3): 503-509.
[13] 秦建伟, 罗丽珠, 帅茂兵. 金属铀的水蒸气腐蚀行为研究现状*[J]. 《材料导报》期刊社, 2017, 31(13): 17-24.
[1] Guang MA,Xin CHEN,Licheng LU,Dongqun XIN,Li MENG,Hao WANG,Ling CHENG,Fuyao YANG. Monte Carlo Simulation of the Evolution of Goss Texture in Secondary Recrystallization of Thin Gauge Grain Oriented Silicon Steel[J]. Materials Reports, 2018, 32(2): 313 -315 .
[2] WANG Tiantian, XU Mengjia, XU Jijin, YU Chun, LU Hao. Influence of Second Welding Thermal Cycle on Reheat Cracking Sensitivity of CGHAZ in T23 Steel[J]. Materials Reports, 2017, 31(12): 56 -59 .
[3] XIE Jiale, YANG Pingping, LI Chang Ming. Stable and High-efficient α-Fe2O3 Based Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics[J]. Materials Reports, 2018, 32(7): 1037 -1056 .
[4] YANG Shicong, YAO Guowen, ZHANG Jinquan, SHI Kang. The Corrosion Fatigue Characteristic of Steel Strand Experiencing an Artificial Accelerated Salt Fog Ageing[J]. Materials Reports, 2018, 32(12): 1988 -1993 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] LI Xiuli, TIE Shengnian. Effect of Quick-dissolving and High-viscosity Carboxymethyl Cellulose Sodium on Properties of Glauber’s Salt-based Composites Phase Change Energy Storage Materials with Different Phase Transition Temperature Gradient[J]. Materials Reports, 2018, 32(22): 3848 -3852 .
[7] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[8] REN Xiuxiu, ZHU Yiju, ZHAO Shengxiang, HAN Zhongxi, YAO Lina. The Relationship Between Micromechanical Property and Friction Property of Four Kinds of Energetic Crystals[J]. Materials Reports, 2019, 33(z1): 448 -452 .
[9] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[10] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed