Please wait a minute...
材料导报  2025, Vol. 39 Issue (16): 24080006-7    https://doi.org/10.11896/cldb.24080006
  金属与金属基复合材料 |
铝合金粉末80 μm大层厚SLM成型熔池形貌与组织演变
龚海军1,*, 王玲1, 亢红叶2, 左乾隆2, 安治国1, 高正源1
1 重庆交通大学机电与车辆工程学院,重庆 400074
2 重庆安德瑞源科技有限公司,重庆 401329
Study on the Morphology and Microstructure Evolution of the Molten Pool in Selective Laser Melting Forming Process of Aluminum Alloy Powder with a Large Layer Thickness of 80 μm
GONG Haijun1,*, WANG Ling1, KANG Hongye2, ZUO Qianlong2, AN Zhiguo1, GAO Zhengyuan1
1 School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2 Chongqing Adrayn Technology Co., Ltd., Chongqing 401329, China
下载:  全 文 ( PDF ) ( 57813KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提升现有铝合金选区激光熔化(SLM)成型工艺的铺粉层厚和质量稳定性,揭示大层厚铝合金SLM成型熔池形貌与组织演变规律,针对AlSi10Mg合金进行了80 μm层厚的单层及多层SLM成型试验研究。单层单熔道实验表明,能量输入过大或过小易使单熔道出现扭曲和球化缺陷,475.0 J/m的线能量输入和小湿润角使熔池易于铺展,当熔池宽深比大于1时,可获得较为理想的平直单熔道;多熔道熔池凝固轨迹的起伏程度与激光功率密切相关,搭接率随着扫描间距的增大而减小,熔道表面球化与沟壑增多,但搭接率越大,致密度反而降低,搭接率57.1%时可获得最佳致密度。多层试样微观组织分析表明,经单层多熔道之间搭接、多层多熔道重熔和热影响后冶金结合能力提高,组织呈蜂窝状结构,与小层厚组织相似、力学性能接近,其致密度可达99.24%,成型效率可达31.7 cm3/h。本工作成功将大层厚成型工艺应用于某水泵叶轮件的SLM成型,为获得高强度、致密、性能良好的铝合金零件提供了理论参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龚海军
王玲
亢红叶
左乾隆
安治国
高正源
关键词:  铝合金  选区激光熔化  大层厚  熔道形貌  微观组织  成型效率    
Abstract: In order to improve the powder layer thickness and quality stability of the existing aluminum alloy selective laser melting (SLM) forming process, and to reveal the morphology and microstructure evolution of the SLM forming melt pool for thick aluminum alloys, single-layer and multi-layer SLM forming experiments with a layer thickness of 80 μm were conducted on AlSi10Mg alloy. The single channel experiments show that excessive or insufficient energy input can easily cause distortion and spheroidization defects in a single melt. A line energy input of 475.0 J/m and a small wetting angle can make the melt pool easier to spread. When the width-to-depth ratio of the melt pool was greater than 1, an ideal straight single melt pool can be obtained; the fluctuation degree of the solidification trajectory of the multi-melt pool is closely related to the laser power. The overlap rate decreases with the increase of scanning spacing, and the surface of the melt pool becomes more spheroidized and grooved. However, the higher the overlap rate, the lower the density. The optimal density can be obtained when the overlap rate is 57.1%. The microstructure analysis of multi-layer samples shows that the metallurgical bonding ability was improved after overlapping between single-layer and multi-layer, multi-layer and multi-layer remelting, and thermal influence. The microstructure presents a honeycomb structure, similar to the microstructure with small layer thickness and similar mechanical properties. Its density can reach 99.24%, and the forming efficiency can reach 31.7 cm3/h. This work successfully applied the thick layer forming process to SLM forming of a certain water pump impeller component, providing a theoretical reference for obtaining high-strength, dense, and high-performance aluminum alloy parts.
Key words:  aluminium alloy    selective laser melting    large layer thickness    melt morphology    microstructure    forming efficiency
出版日期:  2025-08-15      发布日期:  2025-08-15
ZTFLH:  TG665  
基金资助: 重庆市自然科学基金(cstc2021jcyj-msxmX1047);重庆市研究生教育教学改革研究重点项目(yjg212027)
通讯作者:  龚海军,重庆交通大学机电与车辆工程学院讲师、硕士研究生导师。目前主要从事选区激光熔化、激光熔覆和压铸等方面的研究工作。ghj@cqjtu.edu.cn   
引用本文:    
龚海军, 王玲, 亢红叶, 左乾隆, 安治国, 高正源. 铝合金粉末80 μm大层厚SLM成型熔池形貌与组织演变[J]. 材料导报, 2025, 39(16): 24080006-7.
GONG Haijun, WANG Ling, KANG Hongye, ZUO Qianlong, AN Zhiguo, GAO Zhengyuan. Study on the Morphology and Microstructure Evolution of the Molten Pool in Selective Laser Melting Forming Process of Aluminum Alloy Powder with a Large Layer Thickness of 80 μm. Materials Reports, 2025, 39(16): 24080006-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080006  或          https://www.mater-rep.com/CN/Y2025/V39/I16/24080006
1 Dang B, Zhang Z, Li K, et al. Materials Science and Technology, 2023, 39(18), 3188.
2 Cabrini M, Lorenzi S, Testa C, et al. Materials, 2021, 14(19), 5062.
3 Rao V R, Pattanayak D K, Vanitha C. Transactions of the Indian Institute of Metals, 2023, 76(2), 271.
4 Wang P D, Lei H S, Zhu X L, et al. Journal of Alloys and Compounds, 2019, 789, 852.
5 Cao Y, Lin X, Wang Q Z, et al. Journal of Materials Science & Technology, 2021, 62, 162.
6 Duan W, Zhao Z, Ji H W, et al. Materials Reports, 2019, 33(10), 1685(in Chinese).
段伟, 赵哲, 吉红伟, 等. 材料导报, 2019, 33(10), 1685.
7 Pan W, Ye Z G, Zhang Y Z, et al. Materials, 2022, 15(7), 2528.
8 Shi Z W, Wang M J, Qi W J, et al. China Mechanical Engineering, 2022, 33(8), 959(in Chinese).
史振伟, 王敏杰, 戚文军, 等. 中国机械工程, 2022, 33(8), 959.
9 Yan T Q, Chen B, Tang P J, et al. Chinese Journal of Lasers, 2021, 48(10), 52(in Chinese).
闫泰起, 陈冰清, 唐鹏钧, 等. 中国激光, 2021, 48(10), 52.
10 Zhang L F, Li Y J, Cha S X, et al. Materials Reports, 2023, 37(S1), 377(in Chinese).
张留芳, 李延杰, 查少雄, 等. 材料导报, 2023, 37(S1), 377.
11 Wang T T, Dai S M, Liao H L, et al. Rapid Prototyping Journal, 2020, 26(9), 1657.
12 Liu M N, Wei K W, Zeng X Y. Materials Science and Engineering A, 2022, 842, 143107.
13 Xiang Y, Zhang S Z, Li J F, et al. Journal of Zhejiang University (Engineering Science), 2019, 53(11), 2102(in Chinese).
向羽, 张树哲, 李俊峰, 等. 浙江大学学报(工学版), 2019, 53(11), 2102.
14 Shen H Y, Yan J W, Niu X M. Materials, 2020, 13(18), 4157.
15 Shi W T, Wang P, Liu Y D, et al. Powder Technology, 2020, 360, 151.
16 Ren X, Liu H L, Lu F Y, et al. International Journal of Refractory Me-tals & Hard Materials, 2021, 96, 105490.
17 Liang E Q, Dai Y, Bai J, et al. Journal of Materials Engineering, 2022, 50 (5), 156(in Chinese).
梁恩泉, 代宇, 白静, 等. 材料工程, 2022, 50 (5), 156.
18 Wu L Y, Zhao Z Y, Bai P K. Chinese Journal of Lasers, 2023, 50 (16), 282(in Chinese).
吴利芸, 赵占勇, 白培康. 中国激光, 2023, 50 (16), 282.
19 Yan T Q, Tang P J, Chen B Q, et al. Journal of Mechanical Engineering, 2020, 56 (8), 37(in Chinese).
闫泰起, 唐鹏钧, 陈冰清, 等. 机械工程学报, 2020, 56 (8), 37.
20 Jian H, Wu J, Pai J, et al. Materialwissenschaft Und Werkstofftechnik, 2023, 54(12), 1684.
21 Chen K Y, Xu L M, Gan J, et al. Laser & Optoelectronics Progress, 2021, 58 (13), 347(in Chinese).
陈柯宇, 许莉敏, 甘杰, 等. 激光与光电子学进展, 2021, 58 (13), 347.
22 Cerri E, Ghio E, Bolelli G. Journal of Materials Engineering and Performance, 2021, 30(7), 4981.
23 Liu Y D, Zhang M, Shi W T, et al. Optics and Laser Technology, 2021, 138, 106872.
[1] 秦传广, 姜博, 刘乃志, 王晔, 胡茂良, 许红雨, 吉泽升, 尚金翅. Al7Si0.5Mg合金喷丸处理微观组织形貌及腐蚀行为研究[J]. 材料导报, 2025, 39(9): 24030204-7.
[2] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[3] 李欢, 张健, 伍世英, 刘千喜. 焊头形状对Cu/Al大功率超声焊接温度场及塑性变形的影响[J]. 材料导报, 2025, 39(6): 24010115-6.
[4] 姚未怡, 卜恒勇. 轧制态7050铝合金双道次热变形微观组织演变[J]. 材料导报, 2025, 39(4): 23120032-8.
[5] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[6] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[7] 李波, 许龙, 杨涵, 杜勇. 均匀化处理对时效强化Al-Mg-Zn-Sc-Zr合金微观组织与性能的影响[J]. 材料导报, 2025, 39(16): 24070104-6.
[8] 刁旺战, 徐祥久, 王萍, 赵卫君, 刘海, 张松. Haynes 282焊接接头长时热暴露后的力学性能和组织稳定性[J]. 材料导报, 2025, 39(14): 24050002-7.
[9] 麻相龙, 曹睿, 徐灏, 周宁, 高爽, 徐志伟. CoCrFeNiMn高熵合金中间层热等静压扩散连接钛/铝接头组织和性能[J]. 材料导报, 2025, 39(12): 24060014-7.
[10] 吴文杰, 魏文猴, 范树迁. 基于梯形交错的多光束选区激光熔化拼接策略[J]. 材料导报, 2025, 39(11): 24060201-6.
[11] 孙磊, 何鹏, 张亮, 张墅野, 王文昊, 张潘杰. TiN纳米颗粒增强Sn焊点的性能与组织研究[J]. 材料导报, 2025, 39(10): 24030018-4.
[12] 张兵宪, 陈素明, 贺韡, 牛鹏亮, 黄春平. 补焊对7050-T7451高强铝合金搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2025, 39(10): 24040146-6.
[13] 张建波, 沈琪飞, 尹宁康, 张晋涵, 刘敬萱. Ni/P质量比对Cu-Ni-P合金组织和性能的影响[J]. 材料导报, 2025, 39(10): 24030240-6.
[14] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[15] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed