Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 24060201-6    https://doi.org/10.11896/cldb.24060201
  金属与金属基复合材料 |
基于梯形交错的多光束选区激光熔化拼接策略
吴文杰1,2,3, 魏文猴2, 范树迁2,*
1 重庆大学机械与运载工程学院,重庆 400044
2 中国科学院重庆绿色智能技术研究院,智能制造技术研究所,重庆 400714
3 中国科学院大学重庆学院人工智能学院,重庆 400714
Overlap Strategy of Multi-beam Selective Laser Melting Based on Trapezoidal Interleave
WU Wenjie1,2,3, WEI Wenhou2, FAN Shuqian2,*
1 College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, China
2 Intelligent Manufacturing Technology Institute, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
3 College of Artificial Intelligence, Chongqing School of University of Chinese Academy of Sciences, Chongqing 400714, China
下载:  全 文 ( PDF ) ( 14911KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为解决多光束选区激光熔化拼接成形中拼接线位置固定、尖角烧蚀、重熔等问题,提出一种梯形交错拼接策略。该拼接策略采用梯形拼接线消除尖角烧蚀,使拼接区域能量输入均匀;相邻层间拼接界面彼此交错,在保证层内相邻分区充分熔合的同时,能有效提高相邻层间结合度。通过工艺实验对比分析不同拼接策略,验证了所提出的拼接策略能减少拼接区域孔洞缺陷,增强拼接区域显微硬度,提升成形样品的致密度与压缩强度。梯形交错拼接策略能有效提升成形件拼接区域质量,为大尺寸零件的增材制造过程提供新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴文杰
魏文猴
范树迁
关键词:  梯形交错  拼接策略  轮廓分割  多光束  选区激光熔化    
Abstract: In order to solve the problems of fixed position of overlap line, sharp corner ablation and remelting in multi-beam selective melting overlap forming, a trapezoidal interleave overlap strategy is presented here.The overlap strategy adopts trapezoidal interleave overlap lines to eliminate sharp corner ablation and makes the energy input of overlap region more uniform; and the overlap interfaces between adjacent layers are intertwined with each other, which can effectively improve the bonding degree between adjacent layers while ensuring the sufficient fusion of adjacent regions in a layer.Through the comparison of different overlap strategies, the proposed overlap strategy can reduce pore defects in the overlap region, enhance the microhardness of the overlap region, and improve the density and compressive strength of the formed samples.The tra-pezoidal interleave overlap strategy can effectively improve the quality of formed part overlap region and provide a new idea for additive manufacturing process of large-sized parts.
Key words:  trapezoidal interleave    overlap strategy    contour separation    multi-beam    selective laser melting
发布日期:  2025-05-29
ZTFLH:  TH164  
基金资助: 国家重点研发计划(2016YFC1100501);重庆市自然科学基金(cstc2021jcyj-msxmX0435)
通讯作者:  *范树迁,重庆大学机械与运载工程学院研究员、博士研究生导师。目前主要从事几何设计与计算在先进制造中的应用、增材制造相关研究工作。fansq@cigit.ac.cn   
作者简介:  吴文杰,现为重庆大学机械与运载工程学院博士研究生,在范树迁研究员的指导下进行研究。目前主要研究领域为增材制造中的路径优化。
引用本文:    
吴文杰, 魏文猴, 范树迁. 基于梯形交错的多光束选区激光熔化拼接策略[J]. 材料导报, 2025, 39(11): 24060201-6.
WU Wenjie, WEI Wenhou, FAN Shuqian. Overlap Strategy of Multi-beam Selective Laser Melting Based on Trapezoidal Interleave. Materials Reports, 2025, 39(11): 24060201-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060201  或          https://www.mater-rep.com/CN/Y2025/V39/I11/24060201
1 Lu B H, Li D C. Machine Building & Automation, 2013, 42(4), 1 (in Chinese).
卢秉恒, 李涤尘. 机械制造与自动化, 2013, 42(4), 1.
2 Wang H M. Acta Aeronautica et Astronautica Sinica, 2014, 35(10), 2690 (in Chinese).
王华明. 航空学报, 2014, 35(10), 2690.
3 Gu D D, Meiners W, Wissenbach K, et al. International Materials Reviews, 2013, 57(3), 133.
4 Li Z H, Zou Z K, Bai P, etal. Metals, 2019, 9(12), 1337.
5 Li F Z. Fundamental research on control of shape and performance technology of Ti6Al4V alloy formed by multi-beam laser selective melting. Master’s Thesis, Huazhong University of Science and Technology, China, 2019 (in Chinese).
李方志. 多光束激光选区熔化成形Ti6Al4V合金控形控性技术基础研究. 硕士学位论文, 华中科技大学, 2019.
6 Wiesner A. In:8th International Conference on Photonic Technologies LANE. Germany, 2014, pp. 1.
7 Zeng Q P, Fu G, Ren Z H, et al. Journal of Materials Engineering, 2023, 1 (in Chinese).
曾庆鹏, 傅广, 任治好, 等. 材料工程, 2023, 1.
8 Zhang C C, Zhu H H, Hu Z H, et al. Materials Science and Enginee-ring:A, 2019, 746, 416.
9 Li F Z, Wang Z M, Zeng X Y. Materials Letters, 2017, 199, 79.
10 Liu B, Kuai Z Z, Li Z H, et al. Materials, 2018, 11(12), 2354.
11 Zhang S Y, Wang M, Wang C, et al. Applied Laser, 2019, 39(4), 544 (in Chinese).
张思远, 王猛, 王冲, 等. 应用激光, 2019, 39(4), 544.
12 Li P, Shen H B, Wang Z M, et al. Defense Manufacturing Technology, 2021, (4), 27 (in Chinese).
李鹏, 申红斌, 王志敏, 等. 国防制造技术, 2021, (4), 27.
13 Yang S K, Xie Y K, Hu Q D, et al. Aeronautical Manufacturing Technology, 2022, 65(5), 93 (in Chinese).
杨圣昆, 谢印开, 胡全栋, 等. 航空制造技术, 2022, 65(5), 93.
14 Cen W H, Tang H L, Zhang J Z, et al. Chinese Journal of Lasers, 2021, 48(18), 173 (in Chinese).
岑伟洪, 汤辉亮, 张将兆, 等. 中国激光, 2021, 48(18), 173.
15 Wang G Z, Wang J Y. Journal of Computer Research and Development, 1987, 24(10), 59 (in Chinese).
汪国昭, 汪嘉业. 计算机研究与发展, 1987, 24(10), 59.
16 Wu Y X. Journal of Computer-Aided Design & Computer Graphics, 1994, 6(4), 260 (in Chinese).
武运兴. 计算机辅助设计与图形学学报, 1994, 6(4), 260.
17 Dai S M, Xu Z M, Hu Z H, et al. Optics & Optoelectronic Technology, 2019, 17(2), 13 (in Chinese).
戴世民, 徐志明, 胡志恒, 等. 光学与光电技术, 2019, 17(2), 13.
18 Bidare P, Bitharas I, Ward R, et al. Acta Materialia, 2018, 142, 107.
19 Gu D D, Shen Y F. Aeronautical Manufacturing Technology, 2012, (8), 32 (in Chinese).
顾冬冬, 沈以赴. 航空制造技术, 2012, (8), 32.
20 Cherry J A, Davies H M, Mehmood S, et al. International Journal of Advance Manufacturing Technology, 2015, 76(5), 869.
21 Li J S, Qi W J, Li Y J, et al. Materials Reports, 2017, 31(10), 65 (in Chinese).
李吉帅, 戚文军, 李亚江, 等. 材料导报, 2017, 31(10), 65.
22 Zhou H. Study on process and microstructure and properties of ZK61 magnesium alloy by selective laser melting. Master’s Thesis, Huazhong University of Science and Technology, China, 2019 (in Chinese).
周华. 激光选区熔化成形ZK61镁合金工艺及组织性能研究. 硕士学位论文, 华中科技大学, 2019.
23 Wei S M, Ma P, Zhang Z Y, et al. Heat Treatment of Metals, 2022, 47(12), 28 (in Chinese).
魏水淼, 马盼, 张志宇, 等. 金属热处理, 2022, 47(12), 28.
[1] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[2] 侯娟, 刘慧, 陈亮, 闵师领, 蒋梦蕾. 选区激光熔化成形304L不锈钢氦泡长大与辐照硬化行为[J]. 材料导报, 2024, 38(2): 22050298-6.
[3] 郑志军, 郑翔. 基于激光重熔的SLM成形316L不锈钢温度场仿真及工艺优化[J]. 材料导报, 2024, 38(17): 23030304-7.
[4] 许玉婷, 李玉泽, 王建元. 选区激光熔化铝合金及其复合材料的研究进展[J]. 材料导报, 2024, 38(15): 23100101-13.
[5] 彭乐, 郑志军. 激光选区熔化成形金属件的缺陷类型及表征方法概述[J]. 材料导报, 2023, 37(8): 21050053-7.
[6] 曹宇, 白朴存, 刘飞, 侯小虎. 选区激光熔化IN718合金固溶过程成分均匀化规律的研究[J]. 材料导报, 2023, 37(21): 22040096-7.
[7] 梁梦, 黎振华, 刘美红, 罗心磊, 解靖伟. 选区激光熔化Fe-10Cu合金成形工艺优化研究[J]. 材料导报, 2023, 37(14): 21110123-7.
[8] 袁信翊, 刘杨, 李明轩, 陆晓峰, 朱晓磊. 基于打印参数的选区激光熔化构件内部形貌调控研究现状[J]. 材料导报, 2022, 36(21): 20080263-9.
[9] 滕宝仁, 黎振华, 李淮阳, 杨睿, 申继标. 选区激光熔化制备颗粒增强金属基复合材料的研究进展[J]. 材料导报, 2022, 36(2): 20040170-6.
[10] 马玉天, 许佳玉, 高钰璧, 刘博, 胡勇, 丁雨田, 陈大林, 陈韩锋. SLM成形Inconel 738合金缺陷的演变及形成机理[J]. 材料导报, 2022, 36(13): 21040269-7.
[11] 金鑫源, 兰亮, 何博, 朱奥迪, 高双. 选区激光熔化成形金属零件表面粗糙度研究进展[J]. 材料导报, 2021, 35(3): 3168-3175.
[12] 黄建国, 任淑彬. 选区激光熔化成型铝合金的研究现状及展望[J]. 材料导报, 2021, 35(23): 23142-23152.
[13] 陈帅, 陶凤和, 贾长治, 孙河洋. 选区激光熔化成型4Cr5MoSiV1钢的组织与性能优化[J]. 材料导报, 2021, 35(16): 16126-16132.
[14] 褚夫众, 张曦, 黄文静, 侯娟, 张恺, 黄爱军. 选区激光熔化铝合金缺陷的形成机制和对力学性能的影响:综述[J]. 材料导报, 2021, 35(11): 11110-11118.
[15] 宋亢, 坚增运, 王渭中, 陈焱. SLM成形10%SiC颗粒增强铝基复合材料的工艺优化及性能[J]. 材料导报, 2020, 34(Z2): 376-380.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed