Mechanical Properties and Microstructural Stability of Haynes 282 Weld Joints Experienced Long-term Thermal Exposure
DIAO Wangzhan1,2, XU Xiangjiu1,2,*, WANG Ping1,2, ZHAO Weijun1,2, LIU Hai1,2, ZHANG Song1,2
1 State Key Laboratory of Low-carbon Thermal Power Generation Technology and Equipments, Harbin 150046, China 2 Harbin Boiler Company Limited, Harbin 150046, China
Abstract: The nickel based high-temperature alloy Haynes 282 was welded using the hot-wire TIG welding process, followed by aging strengthening heat treatment (1 010 ℃/2 h/air cooling+(788±15) ℃/8 h/air cooling). After heat treatment, long-term thermal exposure tests with time lengths of 1 000 h, 3 000 h, 5 000 h, 8 000 h, and 10 000 h were conducted on the welded joints at the service temperature of 750 ℃. After 5 000 hour thermal exposure, μ-phase began to precipitate in the weld, and the amount of μ-phase gradually increased with further prolonged thermal exposure (up to 10 000 h). The coarsening rates of γ′-phase in both the base metal and the welded joint conformed to the Lifshitz-Slyozov-Wagner (LSW) ripening theory. After 10 000 hour thermal exposure, the impact toughness (specimen size:55 mm×10 mm×7.5 mm) decreased from 33.2 J/cm2 after aging treatment to 15.6 J/cm2. The mechanical properties of the welded joint first increased and then decreased with increasing thermal exposure time length. This trend can be attributed to two factors:(ⅰ) the interaction between γ′-phase and dislocations transformed from weakly coupled dislocation shearing to strongly coupled dislocation shearing; (ⅱ) the precipitation, morphology, and quantity changes of the μ-phase.
1 Rösler J, Götting M, Del Genovese D, et al. Advanced Engineering Materials, 2003, 5, 469.
2 Viswanathan R, Sarver J, Tanzosh J M. Journal of Materials Engineering and Performance, 2006, 15, 255.
3 Ramakrishnan A, Dinda G P. Metallurgical and Materials Transactions A, 2019, 748, 347.
4 Cedro V, Render M, Chukwunenye K. International Journal of Fatiguejournal of Pressure Vessel Technology, 2023, 145(3), 1045.
5 Barat K, Ghosh M, Sivaprasad S. Metallurgical and Materials Transactions A, 2018, 49, 5211.
6 Pérez-González F A, Garza-Montes-de Oca N F. Oxidation of Metals, 2014, 82, 145.
7 Osoba L O, Oladoye A M, Ogbonna V E. Journal of Alloys and Compounds, 2019, 804, 378.
8 Singh S, Andersson J. Metals, 2020, 10(1), 29.
9 Kim N, Kang J. Bang J, et al. Metals, 2021, 11(5), 726.
10 Pike L M. In:Proceedings of the 7th International Symposium on Superalloy. PA, USA, 2012, pp. 645.
11 Caron J, Pike L. MATEC Web of Conferences, 2014, 14, 13003.
12 DuPont J N, Lippold J C, Kiser S D. Welding Metallurgy and Weldability of Nickel-Base, John Wiley & Sons Inc. Press, USA, 2009, pp. 19.
13 Pike L M. In:Proceedings of the 11th International Symposium on Superalloys. PA, USA, 2008, pp. 14.
14 Rosenthal R, West D R F. Materials Science and Technology, 1999, 15, 1387.
15 Grosdidier T, Hazotte A, Simon A. Materials Science and Technology A, 1998, 256, 183.
16 Nathal M V, MacKay R A, Garlick R G. Materials Science and Technology, 1985, 75, 195.
17 Lifshitz I M, Slyozov VV. Journal of Physics and Chemistry, 1961, 19, 35.
18 Wagner C. Zeitschrift fur Metallkunde. 1961, 65, 581.
19 Meher S, Carroll M, Pollock T M, et al. Materials Design. 2018, 140, 249.
20 Tiley J, Viswanathan G B, Srinivasan R, et al. Acta Metallurgica Sinica, 2009, 57, 2538.
21 Kumar K C H, Ansara I, Wollants P. CALPHAD, 1998, 22(3), 103.
22 Yang J X, Zheng Q, Sun X F, et al. Scripta Meterialia, 2006, 55(4), 297.
23 Mitchel W I. Zeitschrift fur Metallkunde, 1966, 57, 586.
24 Huther W, Reppich B. International Journal of Materials Research, 1978, 69, 628.
25 Kozar R W, Suzuki A, Milligan W W, et al. Metallurgical and Materials Transactions A, 2009, 40, 1588.
26 Raynor D, Silcock J M. Metal Science Journal, 1970, 4, 121.
27 Kelly A, Nicholson R S. Strengthening mthods in crystals, Elsevier Publishing Co., UK, 1971, pp. 9.
28 Haynes International Inc. HAYNES 282 Alloy, material data sheet. http://www. Haynesintl. com/pdf/h3173. pdf.
29 Reppich B. Acta Metallurgica Sinica, 1982, 30, 87.
30 Chong Y, Liu. Z D, Godfrey A, et al. Materials Science and Engineering A, 2014, 589, 153.