Please wait a minute...
材料导报  2025, Vol. 39 Issue (14): 24050041-7    https://doi.org/10.11896/cldb.24050041
  金属与金属基复合材料 |
Hf改性MCrAlY粘结层合金相组成结构与抗高温氧化性能研究
房品希1, 张婧1,*, 辛文彬1, 常振东2, 宋希文1, 牟仁德2
1 内蒙古科技大学稀土产业学院(稀土工程技术学院),内蒙古 包头 014010
2 中国航发北京航空材料研究院,北京 100095
Phase Composition and Structure and High-temperature Oxidation Resistance of the Hf-modified MCrAlY Bond Coating Alloy
FANG Pinxi1, ZHANG Jing1,*, XIN Wenbin1, CHANG Zhendong2, SONG Xiwen1, MU Rende2
1 School of Rare Earth Industry (School of Rare Earth Engineering and Technology), Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
2 AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
下载:  全 文 ( PDF ) ( 33753KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 粘结层合金的抗高温氧化性能很大程度上取决于相组成结构且直接影响其制备的热障涂层的服役性能和使用寿命。本工作以Hf改性MCrAlY粘结层合金为研究对象,借助Thermo-Calc和FactSage热力学计算与X射线衍射仪、场发射扫描电镜和电子探针等手段综合分析了合金的相组成结构、1 100 ℃等温氧化行为及改性元素Hf的分布特征。结果表明,粘结层合金在400 ℃下平衡相组成以FCC_L12结构的γ′-Ni3Al为主,还有少量BCC_B2结构的β-NiAl和α-Cr相;当温度达到857 ℃时,发生γ′-Ni3Al+α-Cr→β-NiAl+γ-Ni相变,合金主要由β-NiAl和FCC_L12结构的γ-Ni相组成;在非平衡条件下合金室温相组成中基体相为β-NiAl和少量的γ′-Ni3Al,基体上分布着α-Cr析出相。当等温氧化时间从25 h延长至100 h时,合金平均氧化增重由(5.83±0.515) g·m-2逐渐增大到(9.42±0.355) g·m-2,平均氧化速率由(0.23±0.021) g·m-2·h-1不断降低到(0.09±0.004) g·m-2·h-1;拟合结果显示可用抛物线模型来准确描述等温氧化动力学特征且稳定氧化可分为两个阶段:第一阶段为10~50 h,氧化速率常数kp=1.797 g2·m-4·h-1;第二阶段为50~100 h,kp=0.262 g2·m-4·h-1。此外,改性元素Hf主要分布于合金γ′-Ni3Al/β-NiAl相界面,氧化过程中生成稳定的HfO2处于氧化膜内部,不仅能够减缓Al、O的扩散速率,而且能够起到“钉扎”作用,提高合金的抗氧化性及氧化膜的抗剥落能力;但Hf分布不均匀时容易导致大颗粒HfO2生成,从而引起局部内氧化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
房品希
张婧
辛文彬
常振东
宋希文
牟仁德
关键词:  粘结层合金  Hf改性MCrAlY合金体系  相组成结构  抗高温氧化性能    
Abstract: The high-temperature oxidation resistance of bond coating alloys largely depends on phase composition and structure, directly affecting the service performance and life of thermal barrier coatings they prepared. In this work, the phase composition and structure, isothermal oxidation behavior at 1 100 ℃ and Hf distribution characteristics of the Hf-modified MCrAlY bond coating alloy were comprehensively investigated through Thermo-Calc and FactSage thermodynamic calculations, coupled with X-ray diffraction, field emission scanning electron microscopy and electron probe microanalysis, etc. The obtained results showed that the equilibrium phase composition of the bond coating alloy at 400 ℃ was primarily FCC_L12 structured γ′-Ni3Al and some BCC_B2 structured β-NiAl and α-Cr. The phase transformation of γ′-Ni3Al+α-Cr→β-NiAl+γ-Ni happened at 857 ℃, and the dominant phase composition changed into β-NiAl and FCC_L12 structured γ-Ni. Under nonequilibrium conditions, the matrix phase at room temperature consisted of β-NiAl and some γ′-Ni3Al, and the precipitated phase was α-Cr. Moreover, the average mass gain gradually increased from (5.83±0.515) g·m-2 to (9.42±0.355) g·m-2, while the oxidation rate continuously decreased from (0.23±0.021) g·m-2·h-1 to (0.09±0.004) g·m-2·h-1 as the oxidation time increased from 25 h to 100 h. Furthermore, the fitting results indicated that the kinetic characteristics of isothermal oxidation could be accurately described by a parabolic model, and the stable oxidation was divided into two stages. In the first stage ranging from 10 h to 50 h, the oxidation rate constant kp was equal to 1.797 g2·m-4·h-1, and the value obviously decreased to 0.262 g2·m-4·h-1 in the second stage of 50—100 h. In addition, the modifying element Hf was primarily distributed at the interface of β-NiAl and γ′-Ni3Al and brought about the stable formation of HfO2 within the oxidation layer, which could not only effectively restrain the diffusion of Al and O, but also exert a pinning effect, consequently improving the oxidation resistance of the bond coating alloys and the anti-pee-ling property of the oxidation layer. Notably, the unevenly distributed Hf in the alloy easily resulted in large-sized HfO2, which caused local internal oxidation.
Key words:  bond coating alloy    Hf-modified MCrAlY alloy system    phase composition and structure    high-temperature oxidation resistance
出版日期:  2025-07-25      发布日期:  2025-07-29
ZTFLH:  TG146.4  
基金资助: 内蒙古自治区高等学校青年科技英才支持计划(NJYT24070);中央引导地方科技发展资金项目(2023ZY0009);内蒙古自治区直属高校基本科研业务费(118);内蒙古自治区教育厅一流学科科研专项项目(YLXKZX-NKD-050)
通讯作者:  * 张婧,博士,内蒙古科技大学稀土产业学院(稀土工程技术学院)副教授、硕士研究生导师。目前主要从事高附加值金属材料合金化与相变、组织与性能调控等方面的研究工作。lulu2910@126.com   
作者简介:  房品希,内蒙古科技大学硕士研究生,在张婧副教授的指导下进行研究。目前主要研究领域为热障涂层粘结层材料组织与性能调控。
引用本文:    
房品希, 张婧, 辛文彬, 常振东, 宋希文, 牟仁德. Hf改性MCrAlY粘结层合金相组成结构与抗高温氧化性能研究[J]. 材料导报, 2025, 39(14): 24050041-7.
FANG Pinxi, ZHANG Jing, XIN Wenbin, CHANG Zhendong, SONG Xiwen, MU Rende. Phase Composition and Structure and High-temperature Oxidation Resistance of the Hf-modified MCrAlY Bond Coating Alloy. Materials Reports, 2025, 39(14): 24050041-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050041  或          https://www.mater-rep.com/CN/Y2025/V39/I14/24050041
1 Guo H B, Gong S K, Xu H B. Materials China, 2009, 28(9-10), 18 (in Chinese).
郭洪波, 宫声凯, 徐惠彬. 中国材料进展, 2009, 28(9-10), 18.
2 Mu R D, Lu F, He L M, et al. Thermal Spray Technology, 2009, 1(1), 53 (in Chinese).
牟仁德, 陆峰, 何利民, 等. 热喷涂技术, 2009, 1(1), 53.
3 Wu Y, Guo X Y, He D Y. China Surface Engineering, 2023, 36(5), 1 (in Chinese).
吴杨, 郭星晔, 贺定勇. 中国表面工程, 2023, 36(5), 1.
4 Huang G H, Zhen Z, Wang X, et al. Vacuum, 2024, 61(2), 1 (in Chinese).
黄光宏, 甄真, 王鑫, 等. 真空, 2024, 61(2), 1.
5 Barwinska I, Kopec M, Kukla D, et al. Coatings, 2023, 13, 769.
6 Ramasamy N, Kalam M A, Varman M, et al. Coatings, 2021, 11, 692.
7 Cao G M, Wu J. Materials Research and Application, 2025, 19(2), 301(in Chinese).
曹高明, 吴静. 材料研究与应用, 2025, 19(2), 301.
8 Hou Z N, Yang W C, Zhan Y Z, et al. Materials Research and Application, 2023, 17(5), 953 (in Chinese).
侯振宁, 杨文超, 湛永钟, 等. 材料研究与应用, 2023, 17(5), 953.
9 Liu L T, Li Z X, Wang Y F, et al. Rare Metal Materials and Engineering, 2019, 48(11), 3657 (in Chinese).
刘林涛, 李争显, 王彦峰, 等. 稀有金属材料与工程, 2019, 48(11), 3657.
10 Zhou Y C, Liu Q X, Yang L, et al. Chinese Journal of Solid Mechanics, 2010, 31(5), 504 (in Chinese).
周益春, 刘奇星, 杨丽, 等. 固体力学学报, 2010, 31(5), 504.
11 Liu C B, L F, Jiang X L. The Chinese Journal of Nonferrous Metals, 2007, 17(1), 1 (in Chinese).
刘纯波, 林锋, 蒋显亮. 中国有色金属学报, 2007, 17(1), 1.
12 Wang Z P, Zhan J Y, Liu Y K, et al. Surface Technology, 2023, 52(9), 39 (in Chinese).
王志平, 战金滢, 刘延宽, 等. 表面技术, 2023, 52(9), 39.
13 Gao Y M, Ma W, Feng X Y, et al. Journal of Ceramics, 2024, 45(2), 248 (in Chinese).
高元明, 马文, 冯雪英, 等. 陶瓷学报, 2024, 45(2), 248.
14 Guan H R, Li M H, Sun X F, et al. Acta Metallurgica Sinica, 2002, 38(11), 1133 (in Chinese).
管恒荣, 李美姮, 孙晓峰, 等. 金属学报, 2002, 38(11), 1133.
15 Ge L F, Zhu W, Yang L. Journal of Xiangtan University(Natural Science Edition), 2020, 42(3), 13 (in Chinese).
葛龙飞, 朱旺, 杨丽. 湘潭大学学报(自然科学版), 2020, 42(3), 13.
16 Dai P C, Wu Q, Ma Y, et al. Applied Surface Science, 2013, 271, 311.
17 Ni J, Shi K, Xue S H, et al. Materials Reports, 2021, 35(Z1), 163 (in Chinese).
倪嘉, 史昆, 薛松海, 等. 材料导报, 2021, 35(Z1), 163.
18 Zhao C S. Study on preparation and oxidation resistance of reactive element doped NiAl bond coat. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2019 (in Chinese).
赵春山. 活性元素掺杂NiAl粘结层制备及抗氧化性能研究. 博士学位论文, 上海交通大学, 2019.
19 Liu Z J. Investigation on microstructure evolution and properties of directionally solidified DZ411nickel-based superalloy. Master's Thesis, Lanzhou University, China, 2023 (in Chinese).
刘子杰. 定向凝固DZ411镍基高温合金微观结构演化及性能研究. 硕士学位论文, 兰州大学, 2023.
20 Men Y N, Li J, Lu J W, et al. Surface Technology, 2024, 53(7), 31 (in Chinese).
门引妮, 李进, 卢金文, 等. 表面技术, 2024, 53(7), 31.
21 Shahzad S, Zhang Y D, Wang H F. Rare Metal Materials and Engineering, 2015, 44(S1), 316.
22 Liu C T, Sun X F, Guan H R, et al. Surface and Coatings Technology, 2005, 194, 111.
23 Beele W, Czech N, Quadakkers W J, et al. Surface and Coatings Technology, 1997, 94-95, 41.
24 Ebach-Stahl A, Schulz U, Swadźba R, et al. Corrosion Science, 2021, 181, 109205.
25 Sun H J, Guo D L, Li R Q, et al. Materials Reports, 2024, 38(7), 22120155. (in Chinese).
孙华键, 郭德林, 李如庆, 等. 材料导报, 2024, 38(7), 22120155.
26 Zhao Y S, Zhang M, Dai J W, et al. Materials Reports, 2023, 37(6), 21040168 (in Chinese).
赵云松, 张迈, 戴建伟, 等. 材料导报, 2023, 37(6), 21040168.
27 Chang Z D, Zhang J, Mu R D, et al. Vacuum, 2022, 59(4), 41 (in Chinese).
常振东, 张婧, 牟仁德, 等. 真空, 2022, 59(4), 41.
[1] 杜伟, 石倩, 代明江, 易健宏, 林松盛, 侯惠君. 电弧离子镀NiCrAlY和NiCoCrAlYHfSi涂层抗高温氧化性能[J]. 《材料导报》期刊社, 2018, 32(13): 2267-2271.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed