Please wait a minute...
材料导报  2025, Vol. 39 Issue (14): 24050002-7    https://doi.org/10.11896/cldb.24050002
  金属与金属基复合材料 |
Haynes 282焊接接头长时热暴露后的力学性能和组织稳定性
刁旺战1,2, 徐祥久1,2,*, 王萍1,2, 赵卫君1,2, 刘海1,2, 张松1,2
1 低碳热力发电技术与装备全国重点实验室,哈尔滨 150046
2 哈尔滨锅炉厂有限责任公司,哈尔滨 150046
Mechanical Properties and Microstructural Stability of Haynes 282 Weld Joints Experienced Long-term Thermal Exposure
DIAO Wangzhan1,2, XU Xiangjiu1,2,*, WANG Ping1,2, ZHAO Weijun1,2, LIU Hai1,2, ZHANG Song1,2
1 State Key Laboratory of Low-carbon Thermal Power Generation Technology and Equipments, Harbin 150046, China
2 Harbin Boiler Company Limited, Harbin 150046, China
下载:  全 文 ( PDF ) ( 16099KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用热丝TIG焊工艺对镍基高温合金Haynes 282进行焊接,焊后进行时效强化热处理(1 010 ℃/2 h/空冷+(788±15) ℃/8 h/空冷),热处理后在使用温度(750 ℃)下对焊接接头进行时长分别为1 000 h、3 000 h、5 000 h、8 000 h和10 000 h的长时热暴露实验,并开展热暴露后的微观组织和力学性能演变研究。热暴露5 000 h后,焊缝中开始析出μ相,且μ相数量随热暴露时长的增加(至10 000 h)而逐步增多。焊接接头中母材和焊缝的γ′相粗化速率均符合Lifshitz-Slyozov-Wagner(LSW)熟化理论。热暴露10 000 h后,冲击韧性(试样尺寸55 mm×10 mm×7.5 mm)由时效强化热处理后的33.2 J/cm2下降到15.6 J/cm2。焊接接头力学性能随热暴露时长的增加先升高后降低,此趋势产生的原因一方面跟γ′与位错之间的相互作用由弱耦合位错剪切向强耦合位错剪切转化有关,另一方面与μ相的析出、形态和数量变化有关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刁旺战
徐祥久
王萍
赵卫君
刘海
张松
关键词:  Haynes 282  热暴露  焊接  微观组织演变  力学性能    
Abstract: The nickel based high-temperature alloy Haynes 282 was welded using the hot-wire TIG welding process, followed by aging strengthening heat treatment (1 010 ℃/2 h/air cooling+(788±15) ℃/8 h/air cooling). After heat treatment, long-term thermal exposure tests with time lengths of 1 000 h, 3 000 h, 5 000 h, 8 000 h, and 10 000 h were conducted on the welded joints at the service temperature of 750 ℃. After 5 000 hour thermal exposure, μ-phase began to precipitate in the weld, and the amount of μ-phase gradually increased with further prolonged thermal exposure (up to 10 000 h). The coarsening rates of γ′-phase in both the base metal and the welded joint conformed to the Lifshitz-Slyozov-Wagner (LSW) ripening theory. After 10 000 hour thermal exposure, the impact toughness (specimen size:55 mm×10 mm×7.5 mm) decreased from 33.2 J/cm2 after aging treatment to 15.6 J/cm2. The mechanical properties of the welded joint first increased and then decreased with increasing thermal exposure time length. This trend can be attributed to two factors:(ⅰ) the interaction between γ′-phase and dislocations transformed from weakly coupled dislocation shearing to strongly coupled dislocation shearing; (ⅱ) the precipitation, morphology, and quantity changes of the μ-phase.
Key words:  Haynes 282    thermal exposure    welding    evolution of microstructure    mechanical property
出版日期:  2025-07-25      发布日期:  2025-07-29
ZTFLH:  TG444+.74  
基金资助: 黑龙江省自然科学基金(LH2022E077)
通讯作者:  * 徐祥久,硕士,正高级工程师。目前主要从事电站锅炉、压力容器以及新能源产品的焊接和热处理技术工作,以及新材料、新结构高效焊接技术开发,先进焊接设备研制等。xuxj@hbc.com.cn   
作者简介:  刁旺战,高级工程师,目前就职于哈尔滨锅炉厂有限责任公司,主要从事电站锅炉、压力容器用耐热钢和高温合金的焊接工艺、焊接接头力学性能和微观组织等的研究。
引用本文:    
刁旺战, 徐祥久, 王萍, 赵卫君, 刘海, 张松. Haynes 282焊接接头长时热暴露后的力学性能和组织稳定性[J]. 材料导报, 2025, 39(14): 24050002-7.
DIAO Wangzhan, XU Xiangjiu, WANG Ping, ZHAO Weijun, LIU Hai, ZHANG Song. Mechanical Properties and Microstructural Stability of Haynes 282 Weld Joints Experienced Long-term Thermal Exposure. Materials Reports, 2025, 39(14): 24050002-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050002  或          https://www.mater-rep.com/CN/Y2025/V39/I14/24050002
1 Rösler J, Götting M, Del Genovese D, et al. Advanced Engineering Materials, 2003, 5, 469.
2 Viswanathan R, Sarver J, Tanzosh J M. Journal of Materials Engineering and Performance, 2006, 15, 255.
3 Ramakrishnan A, Dinda G P. Metallurgical and Materials Transactions A, 2019, 748, 347.
4 Cedro V, Render M, Chukwunenye K. International Journal of Fatiguejournal of Pressure Vessel Technology, 2023, 145(3), 1045.
5 Barat K, Ghosh M, Sivaprasad S. Metallurgical and Materials Transactions A, 2018, 49, 5211.
6 Pérez-González F A, Garza-Montes-de Oca N F. Oxidation of Metals, 2014, 82, 145.
7 Osoba L O, Oladoye A M, Ogbonna V E. Journal of Alloys and Compounds, 2019, 804, 378.
8 Singh S, Andersson J. Metals, 2020, 10(1), 29.
9 Kim N, Kang J. Bang J, et al. Metals, 2021, 11(5), 726.
10 Pike L M. In:Proceedings of the 7th International Symposium on Superalloy. PA, USA, 2012, pp. 645.
11 Caron J, Pike L. MATEC Web of Conferences, 2014, 14, 13003.
12 DuPont J N, Lippold J C, Kiser S D. Welding Metallurgy and Weldability of Nickel-Base, John Wiley & Sons Inc. Press, USA, 2009, pp. 19.
13 Pike L M. In:Proceedings of the 11th International Symposium on Superalloys. PA, USA, 2008, pp. 14.
14 Rosenthal R, West D R F. Materials Science and Technology, 1999, 15, 1387.
15 Grosdidier T, Hazotte A, Simon A. Materials Science and Technology A, 1998, 256, 183.
16 Nathal M V, MacKay R A, Garlick R G. Materials Science and Technology, 1985, 75, 195.
17 Lifshitz I M, Slyozov VV. Journal of Physics and Chemistry, 1961, 19, 35.
18 Wagner C. Zeitschrift fur Metallkunde. 1961, 65, 581.
19 Meher S, Carroll M, Pollock T M, et al. Materials Design. 2018, 140, 249.
20 Tiley J, Viswanathan G B, Srinivasan R, et al. Acta Metallurgica Sinica, 2009, 57, 2538.
21 Kumar K C H, Ansara I, Wollants P. CALPHAD, 1998, 22(3), 103.
22 Yang J X, Zheng Q, Sun X F, et al. Scripta Meterialia, 2006, 55(4), 297.
23 Mitchel W I. Zeitschrift fur Metallkunde, 1966, 57, 586.
24 Huther W, Reppich B. International Journal of Materials Research, 1978, 69, 628.
25 Kozar R W, Suzuki A, Milligan W W, et al. Metallurgical and Materials Transactions A, 2009, 40, 1588.
26 Raynor D, Silcock J M. Metal Science Journal, 1970, 4, 121.
27 Kelly A, Nicholson R S. Strengthening mthods in crystals, Elsevier Publishing Co., UK, 1971, pp. 9.
28 Haynes International Inc. HAYNES 282 Alloy, material data sheet. http://www. Haynesintl. com/pdf/h3173. pdf.
29 Reppich B. Acta Metallurgica Sinica, 1982, 30, 87.
30 Chong Y, Liu. Z D, Godfrey A, et al. Materials Science and Engineering A, 2014, 589, 153.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed