Please wait a minute...
材料导报  2025, Vol. 39 Issue (14): 24040172-7    https://doi.org/10.11896/cldb.24040172
  金属与金属基复合材料 |
热处理对30CrMnSiNi2A钢电子束焊接头组织和性能的影响
冯殿远1, 刘诗超2, 王善林1,*, 李欢欢1, 洪敏1, 涂文斌1
1 南昌航空大学航空构件成形与连接江西省重点实验室,南昌 330063
2 海装驻南昌地区军事代表室,南昌 330200
Effect of Heat Treatment on Microstructure and Mechanical Properties of Electron Beam Welding Joint of 30CrMnSiNi2A Steel
FENG Dianyuan1, LIU Shichao2, WANG Shanlin1,*, LI Huanhuan1, HONG Min1, TU Wenbin1
1 Jiangxi Provincial Key Laboratory of Aviation Component Forming and Connection, Nanchang Hangkong University, Nanchang 330063, China
2 Naval Equipment Military Representative Office in Nanchang Area, Nanchang 330200, China
下载:  全 文 ( PDF ) ( 44592KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过试验探究了一种新型焊后热处理制度对30CrMnSiNi2A钢电子束焊接头组织及性能的影响。结果表明,焊态接头在采用这一新型热处理制度后,焊缝、熔合线、热影响区及母材处的板条马氏体和回火索氏体转变为回火马氏体;焊缝、熔合线、热影响区的残余奥氏体含量大幅上升,母材处残余奥氏体含量略有下降。焊缝、熔合线、热影响区及母材处的晶粒尺寸趋于一致,所有区域显微组织同质化。力学性能方面,焊态接头焊缝硬度远大于母材硬度,从焊缝向母材方向,硬度逐渐下降,热处理有效地消除了接头焊缝、熔合线、热影响区和母材的硬度差异,硬度均匀化,母材抗拉强度为795 MPa,焊态接头抗拉强度为765 MPa,热处理后接头抗拉强度为1 456 MPa,接头强度提升明显,表明这种新型热处理制度能促使接头各区域组织变得更均匀并有效降低各区域之间的性能差异。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯殿远
刘诗超
王善林
李欢欢
洪敏
涂文斌
关键词:  30CrMnSiNi2A钢  电子束焊  显微组织  力学性能  热处理制度    
Abstract: The effect of a new post-weld heat treatment system on the microstructure and properties of electron beam welded joints of 30CrMnSiNi2A steel was investigated by experiment. The results show that after adopting this new heat treatment system, the lath martensite and tempered sorbite in the weld, fusion line, heat affected zone and base metal transform into tempered martensite. The content of retained austenite in the weld, fusion line and heat affected zone increases greatly, and the content of retained austenite in the base metal decreases slightly. The grain size of the weld, fusion line, heat affected zone and base metal tends to be consistent, homogenizing the microstructure of these mentioned regions. In terms of mechanical properties, the hardness of the weld joint after welding is much higher than that of the base metal, and from weld joint center towards base metal, the hardness gradually decreases. After heat treatment, the hardness difference between the weld joint, fusion line, heat affected zone and the base metal is greatly eliminated, and the hardness is homogenized. The tensile strength of the base metal and welded joint is 795 MPa and 765 MPa, respectively, and the tensile strength of the joint after heat treatment is obviously improved to 1 456 MPa. This new heat treatment system adopted here promotes the uniformity of the microstructure of each region of the joint, effectively decreasing the performance difference between the regions.
Key words:  30CrMnSiNi2A steel    electron beam welding    microstructure    mechanical property    heat treatment
出版日期:  2025-07-25      发布日期:  2025-07-29
ZTFLH:  TG456.3  
基金资助: 江西省高层次高技能领军人才培养工程;江西省自然科学基金(20232ACB204020)
通讯作者:  * 王善林,南昌航空大学航空制造工程学院教授。目前主要从事特种连接技术、电子封装技术等方面的研究。slwang70518@nchu.edu.cn   
作者简介:  冯殿远,南昌航空大学航空制造工程学院硕士研究生,在王善林教授的指导下进行研究。主要研究方向为金属的高能束流连接。
引用本文:    
冯殿远, 刘诗超, 王善林, 李欢欢, 洪敏, 涂文斌. 热处理对30CrMnSiNi2A钢电子束焊接头组织和性能的影响[J]. 材料导报, 2025, 39(14): 24040172-7.
FENG Dianyuan, LIU Shichao, WANG Shanlin, LI Huanhuan, HONG Min, TU Wenbin. Effect of Heat Treatment on Microstructure and Mechanical Properties of Electron Beam Welding Joint of 30CrMnSiNi2A Steel. Materials Reports, 2025, 39(14): 24040172-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040172  或          https://www.mater-rep.com/CN/Y2025/V39/I14/24040172
1 Xie Y H. Study on the microstructure and properties of electron beam welded joints for ultra high strength steel. Master's Thesis,Tianjin University,China,2017 (in Chinese).
谢永辉. 超高强钢电子束焊接接头微观组织特征与力学性能研究. 硕士学位论文,天津大学,2017.
2 Jikang F,Wei Z,Bojin Q,et al. Rare Metal Materials and Engineering,2017,46(9),2417.
3 Sun W,Wang S,Wu M,et al. Materials Science and Engineering:A,2021,824,141811.
4 Yu B,Wang T,Lv Y,et al. Materials Science and Engineering:A,2021,817,141369.
5 Li J,Dong J M,Niu J, et al. Hot Working Technology, 2004(12), 19 (in Chinese).
李军, 董俊明, 牛靖, 等. 热加工工艺, 2004(12), 19.
6 Niu J, Dong J M, Dong W P, et al. Materials for Mechanical Engineering, 2006(7), 22 (in Chinese).
牛靖, 董俊明, 董卫鹏, 等. 机械工程材料, 2006, 30(7), 22.
7 Liu C S, Cui S G. Welding Technology, 2022, 51(1), 60 (in Chinese).
刘持森, 崔树国. 焊接技术, 2022, 51(1), 60.
8 Akbarzadeh I, Sattari I, Salehi M. Materials Science and Engineering:A, 2011, 528(4-5), 2118.
9 Wang T, Che J F, Pang H Y, et al. Wide and Heavy Plate, 2017, 23(5), 30 (in Chinese).
王通, 车金锋, 庞辉勇, 等. 宽厚板, 2017, 23(5), 30.
10 Luo Y F, Wang X Y, Qiang X H, et al. Journal of Tianjin University (Science and Technology), 2015, 48(S1), 134 (in Chinese).
罗永峰, 王熹宇, 强旭红, 等. 天津大学学报(自然科学与工程技术版), 2015, 48(S1), 134.
11 Yan M G, Liu D P, Shi C X, et al. China aeronautical materials handbook, Standards Press of China, China, 1988 (in Chinese).
颜鸣皋, 刘多朴, 师昌绪, 等. 中国航空材料手册, 中国标准出版社, 1988.
12 Sun W, Wang S, Hong M, et al. Vacuum, 2020, 182, 109765.
13 Wang Z J, Yin F, Li Y W, et al. Journal of Materials Processing Technology, 2022, 302, 117489.
14 Chen F R, Huo L X, Zhang Y F, et al. Journal of Materials Processing Technology, 2002, 129(1-3), 412.
15 Yi H, Du L, Wang G, et al. Journal of Iron and Steel Research International, 2006, 13(3), 36.
16 Wu L, Wang H, Zhu Y, et al. Materialia, 2021, 15, 100962.
17 Zhang S, Ma Y, Huang S, et al. Journal of Materials Science & Technology, 2019, 35(8), 1681.
18 Haefliger S, Kaufmann W. Construction and Building Materials, 2021, 282, 122598.
19 Han W, Fu L, Chen H Y. Rare Metal Materials and Engineering, 2018, 47(8), 2335 (in Chinese).
韩文, 傅莉, 陈海燕. 稀有金属材料与工程, 2018, 47(8), 2335.
20 Hanamura T, Yin F, Nagai K. ISIJ International, 2004, 44(3), 610.
21 Li Y, Bu H, Yang H, et al. Journal of Manufacturing Processes, 2020, 50, 366.
22 Chen T, Ji C, Zhu M. Journal of Alloys and Compounds, 2020, 823, 153650.
23 Li J, Xu Y, Lu B, et al. Journal of Materials Research and Technology, 2022, 18, 352.
24 Ramakrishna R V S M, Bhanu Sankara Rao K, Materials Today:Proceedings, 2021, 44, 2919.
25 Zhang J, Hu K, Zhao J, et al. Materials Today Communications, 2022, 30, 103054.
26 Wu Z H, Huang L F, Gu L W, et al. Forging & Stamping Technology, 2021, 46(8), 217 (in Chinese).
吴正环, 黄历锋, 谷历文, 等. 锻压技术, 2021, 46(8), 217.
27 Song W, Wang P, Wan D, et al. International Journal of Fatigue, 2021, 151, 106389.
28 Fernández R, Bruno G, Garcés G, et al. Materials Science and Engineering:A, 2020, 796, 140013.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 脱锦鹏, 陈安琦, 姚富升, 徐俊杰, 李响, 董龙龙, 杨义. 颗粒增强耐热钛基复合材料设计制备研究进展[J]. 材料导报, 2025, 39(8): 24040119-10.
[12] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[13] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[14] 梅婷, 徐洪扬, 李逊, 龙运伟, 唐华, 李志鹏, 邹爱华. 柱塞泵关键摩擦副中复杂黄铜与硅锰黄铜的微观组织与耐磨特性研究[J]. 材料导报, 2025, 39(7): 24080117-5.
[15] 谭会杰, 王海燕, 华连庚, 高雪云, 吕萌, 于大威, 邢磊. 稀土Ce对Fe-Ni-Al马氏体时效钢等温过程显微组织演变的影响[J]. 材料导报, 2025, 39(7): 24010236-6.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed