Please wait a minute...
材料导报  2026, Vol. 40 Issue (1): 25010096-5    https://doi.org/10.11896/cldb.25010096
  无机非金属及其复合材料 |
质子交换膜燃料电池微孔层径向高传质结构研究
李超磊1,2, 马震翔1,2, 罗龙洋1,2, 于鸿昊1,2, 谭金婷1,2,*, 李赏1,2,3, 潘牧1,2
1 武汉理工大学材料复合新技术全国重点实验室,武汉 430070
2 武汉理工大学燃料电池湖北省重点实验室,武汉 430070
3 佛山仙湖实验室氢氨新能源技术国家能源重点实验室,广东 佛山 528200
Study on Radial Pores Structure of Microporous Layer with High Mass Transportation in Proton Exchange Membrane Fuel Cells
LI Chaolei1,2, MA Zhenxiang1,2, LUO Longyang1,2, YU Honghao1,2, TAN Jinting1,2,*, LI Shang1,2,3, PAN Mu1,2
1 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
2 Hubei Key Laboratory of Fuel Cells, Wuhan University of Technology, Wuhan 430070, China
3 National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, Guangdong, China
下载:  全 文 ( PDF ) ( 10397KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微孔层(MPL)是质子交换膜燃料电池(PEMFC)中质量传递的核心枢纽,提高MPL的水气管理能力对增大电池的极限电流密度、提高电池最大功率密度具有重要意义。本工作采用动态冰模板法制备了具有径向孔道的MPL,增强了电池的水气管理能力。同时通过调整乙醇浴温度改变孔径,结合物理表征和电化学测试对电池性能进行详细的分析。结果表明,孔径随过冷度的增加而减小,-20-Cell的孔径最大,为60 μm,与传统微孔层相比传质阻抗减小约54%,电池的功率密度可达1.89 W/cm2@3 600 mA/cm2。本工作揭示了开发具有径向孔道的MPL对增强燃料电池在高电流密度下的水气管理能力、提高电池性能的重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李超磊
马震翔
罗龙洋
于鸿昊
谭金婷
李赏
潘牧
关键词:  PEMFC  MPL  通道/肋效应  水气管理  径向孔道    
Abstract: Microporous layers (MPLs) are the core component for mass transportation in proton exchange membrane fuel cells (PEMFCs), and it is important to improve the water-gas management capability of MPLs to increase the limiting current density as well as the maximum power density of fuel cells. In this work, MPLs with radial channels were prepared by the dynamic ice template method to enhance the water-gas ma-nagement ability. The ethanol bath temperature was also adjusted to change the channel size, and the cell performance was analyzed in detail based on physical characterization and electrochemical test results. It was found that the rise of subcooling degree results in a decrease of channel size. The -20-Cell has the largest channel size (60 μm), which reduces the mass transport impedance by about 54% compared with the conventional MPL, and the power density of the fuel cell can be up to 1.89 W/cm2@3 600 mA/cm2. This work revealed that the development of MPL with radial pores has great significance in enhancing the water-gas management capability of fuel cells at high current densities, and improving cell performance.
Key words:  PEMFC    MPL    channel/rib effect    water-gas management    radial channel
出版日期:  2026-01-10      发布日期:  2026-01-09
ZTFLH:  TM911.42  
基金资助: 国家自然科学基金(22109122)
通讯作者:  * 谭金婷,博士,武汉理工大学材料科学与工程学院高级实验师。目前主要从事燃料电池膜电极关键材料的研究及相关测试工作。tanjinting@whut.edu.cn   
作者简介:  李超磊,武汉理工大学材料科学与工程学院硕士研究生,主要研究领域为质子交换膜燃料电池。
引用本文:    
李超磊, 马震翔, 罗龙洋, 于鸿昊, 谭金婷, 李赏, 潘牧. 质子交换膜燃料电池微孔层径向高传质结构研究[J]. 材料导报, 2026, 40(1): 25010096-5.
LI Chaolei. Study on Radial Pores Structure of Microporous Layer with High Mass Transportation in Proton Exchange Membrane Fuel Cells. Materials Reports, 2026, 40(1): 25010096-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25010096  或          https://www.mater-rep.com/CN/Y2026/V40/I1/25010096
1 Wu G R, Huang S W, Guo Y, et al. Materials Reports, 2023, 37(19), 78 (in Chinese).
吴国荣, 黄诗雯, 郭跃, 等. 材料导报, 2023, 37(19), 78.
2 Liponi A, Pasini G, Baccioli A, et al. Energy Conversion & Management, 2023, 276, 116525.
3 Kang Z Y, Mo J K, Zhang F Y, et al. Energy & Environmental Science, 2017, 10(1), 166.
4 Brinkert K, Mandin P. npj Microgravity, 2022, 8(1), 52.
5 Jung N, Kim S M, Kang D H, et al. Chemistry of Materials, 2013, 25(9), 1526.
6 Li H, Tang Y, Wang Z, et al. Journal of Power Sources, 2008, 178(1), 103.
7 Zhang L C, Cai C, Tan J T, et al. Materials Reports, 2022, 36(14), 67 (in Chinese).
张立昌, 蔡超, 谭金婷, 等. 材料导报, 2022, 36(14), 67.
8 Chun J H, Park K T, Jo D H, et al. International Journal of Hydrogen Energy, 2010, 35(20), 11148.
9 Weber A Z, Newman J. Journal of the Electrochemical Society, 2005, 152(4), A677.
10 Wu R, Zhu X, Liao Q, et al. International Journal of Hydrogen Energy, 2010, 35(14), 7588.
11 Grimm M, Hellmann M, Kemmer H, et al. Journal of Power Sources, 2023, 580, 233270.
12 Li C, Si D, Liu Y, et al. International Journal of Hydrogen Energy, 2021, 46(19), 11150.
13 Liu Q, Lan F, Chen J, et al. Journal of Power Sources, 2022, 517, 230723.
14 Athanasaki G, Wang Q, Shi X, et al. International Journal of Hydrogen Energy, 2021, 46(9), 6835.
15 Yin Q, Gao W, Zhang C, et al. Journal of Electroanalytical Chemistry, 2023, 928, 117072.
16 Tang H, Wang S, Pan M, et al. Journal of Power Sources, 2007, 166(1), 41.
17 Weng F B, Hsu C Y, Su M C. International Journal of Hydrogen Energy, 2011, 36(21), 13708.
18 Ren G, Qu Z, Wang X, et al. International Journal of Hydrogen Energy, 2024, 52, 1161.
19 Wang X, Chen S, Fan Z, et al. International Journal of Hydrogen Energy, 2017, 42(50), 29995.
20 Gerteisen D, Heilmann T, Ziegler C. Journal of Power Sources, 2008, 177(2), 348.
21 Lee D H, Jo W, Yuk S, et al. ACS Applied Materials & Interfaces, 2018, 10(5), 4682.
22 Iwamatsu M. Physical Review E, 2017, 95(4), 042803.
23 Iwamatsu M. The Journal of Chemical Physics, 2014, 140(6), 064702.
24 Gunther L. American Journal of Physics, 2003, 71(4), 351.
[1] 张立昌, 蔡超, 谭金婷, 周江峰, 王园, 潘牧. 质子交换膜燃料电池微孔层在反极过程中的耐久性研究[J]. 材料导报, 2022, 36(14): 21030086-7.
[1] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
[2] Guang MA,Xin CHEN,Licheng LU,Dongqun XIN,Li MENG,Hao WANG,Ling CHENG,Fuyao YANG. Monte Carlo Simulation of the Evolution of Goss Texture in Secondary Recrystallization of Thin Gauge Grain Oriented Silicon Steel[J]. Materials Reports, 2018, 32(2): 313 -315 .
[3] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[4] WANG Boyuan, YAO Wu. Study on Early Hydration Process of an Environmentally-friendly Gypsum-Cement-Pozzolan Binder System[J]. Materials Reports, 2017, 31(5): 123 -127 .
[5] CHANG Ruohan, CAI Zhongyi, CHENG Liren, CHE Chaojie, CHI Jiaxuan. Flow Stress Prediction Model and Processing Map of Mg-Sm-Zn-Zr Alloy
Based on GA-BP Neural Network
[J]. Materials Reports, 2017, 31(6): 136 -139 .
[6] ZHOU Lei, SONG Yanan, WANG Haidou, LI Guolu, ZHANG Jianjun. Influencing Factors and Fatigue Mechanism of Ultra High Cycle Fatigue: an Overview[J]. Materials Reports, 2017, 31(17): 84 -89 .
[7] WANG Yao, MEI Xiangyang, DUAN Zhengyang, HE Changhua, XU Xiaojun, XIE Daolei, XU Longqian, HUANG Qihua. Advances in Adsorption of Heavy Metals Ions by Biochar and Its Composites[J]. Materials Reports, 2017, 31(19): 135 -143 .
[8] CHEN Yu, YU Fei, LIU Yutong, XU Xiaonan, ZHANG Qiuping, YUAN Huan, XU Ming. Effects of Different Synthesis Process on Photocatalytic Properties of ZnO/Ag Nanocomposites Prepared by Sol-Gel Method[J]. Materials Reports, 2017, 31(24): 120 -124 .
[9] WANG Qing, LI Tianru, ZHANG Qiang, DING Zhaoyang. Strength Characteristics of Geopolymer Based on Gray Relation and Dichotomy[J]. Materials Reports, 2017, 31(23): 182 -186 .
[10] XIE Jiale, YANG Pingping, LI Chang Ming. Stable and High-efficient α-Fe2O3 Based Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics[J]. Materials Reports, 2018, 32(7): 1037 -1056 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed