Please wait a minute...
材料导报  2026, Vol. 40 Issue (1): 25010089-9    https://doi.org/10.11896/cldb.25010089
  高分子与聚合物基复合材料 |
静电纺纳米纤维基水凝胶伤口敷料的制备策略及应用研究进展
侯可心1, 刘建宏2, 杨焜1, 丁晟1, 程雅丽1, 王在玺1, 李钒1,*
1 军事科学院系统工程研究院,天津 300161
2 天津工业大学纺织科学与工程学院,天津 300387
Research Progress on the Preparation Strategies and Applications of Electrospun Nanofiber-based Hydrogel Wound Dressings
HOU Kexin1, LIU Jianhong2, YANG Kun1, DING Sheng1, CHENG Yali1, WANG Zaixi1, LI Fan1,*
1 Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin 300161, China
2 School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
下载:  全 文 ( PDF ) ( 25571KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水凝胶因良好的亲水性、较高的溶胀率及三维多孔结构而成为一类具有潜力的湿性愈合伤口敷料。然而单纯使用水凝胶难以模拟细胞外基质中复杂的三维微纳米纤维结构,从而限制了其功能的提升和在伤口敷料领域的应用。近年来,静电纺纳米纤维基水凝胶伤口敷料结合了静电纺纳米纤维以及水凝胶的优势,展现出可定制的三维空间结构、大比表面积、高孔隙率,并且力学性能、生物功能性得到提升,拓展了水凝胶在伤口敷料领域的应用。本文综述了静电纺纳米纤维基水凝胶伤口敷料的制备策略,包括溶胶原位凝胶化法、静电喷涂法、层压法、分散法、3D打印法以及水凝胶直接静电纺丝法,讨论了其特点及在伤口敷料领域的应用,最后对该领域的未来研究方向做出总结及展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯可心
刘建宏
杨焜
丁晟
程雅丽
王在玺
李钒
关键词:  静电纺纳米纤维基水凝胶  伤口敷料  制备策略    
Abstract: Hydrogels are a promising type of wound dressing due to their excellent hydrophilicity, high swelling rate, and three-dimensional porous structure. However, using pure hydrogels can lead to the limited functionality and application in wound dressings because of the difficulty of simulating the complex three-dimensional micro-nanofiber structure of the extracellular matrix. In recent years, electrospun nanofiber-based hydrogel wound dressings have combined the advantages of electrospun nanofibers and hydrogels, offering customizable three-dimensional spatial structures, large specific surface area, high porosity, enhanced mechanical properties, and improved biofunctionality, expanding their applications. This review summarizes the preparation strategies of electrospun nanofiber-based hydrogel wound dressings, including sol-gelatinization, electrostatic spraying, lamination, dispersion, 3D printing, and direct electrostatic spinning method. It then discusses their characteristics and applications, and finally summarizes and outlines the future research directions in this field.
Key words:  electrospun nanofiber-based hydrogel    wound dressings    preparation strategy
出版日期:  2026-01-10      发布日期:  2026-01-09
ZTFLH:  TS106  
基金资助: 研究院自主基金(ZZB2023C7010)
通讯作者:  * 李钒,博士,高级工程师,研究方向为生物材料及其应用。vanadium_1981@163.com   
作者简介:  侯可心,博士,工程师,研究方向为生物材料及其应用。
引用本文:    
侯可心, 刘建宏, 杨焜, 丁晟, 程雅丽, 王在玺, 李钒. 静电纺纳米纤维基水凝胶伤口敷料的制备策略及应用研究进展[J]. 材料导报, 2026, 40(1): 25010089-9.
HOU Kexin. Research Progress on the Preparation Strategies and Applications of Electrospun Nanofiber-based Hydrogel Wound Dressings. Materials Reports, 2026, 40(1): 25010089-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25010089  或          https://www.mater-rep.com/CN/Y2026/V40/I1/25010089
1 Zhao X H, Chen X Y, Yuk H, et al. Parada G. Chemical Reviews, 2021, 121(8), 4309.
2 Fijul Kabir S M, Sikdar P P, Haque B, et al. Progress in Biomaterials, 2018, 7(3), 153.
3 Liu Y M. Fabrication of GelMa composite nanofibrous hydrogel for wound dressings. Master's Thesis, Donghua University, China, 2021 (in Chinese).
刘玉敏. GelMA复合纳米纤维水凝胶敷料的制备及性能研究. 硕士学位论文, 东华大学, 2021.
4 Chang P, Guo K, Li S, Wang H T, et al. Small, 2024, 20(11), 2208001.
5 Yang Z M. Construction and properties of N-halamine antibacterial wound healing dressings. Ph. D. Thesis, Jiangnan University, China, 2023 (in Chinese).
杨振铭. 基于GelMA的卤胺抗菌伤口敷料的构筑及性能研究. 博士学位论文, 江南大学, 2023.
6 Ghosh T, Das T, Purwar R. Polymer Engineering and Science, 2021, 61(7), 1887.
7 Abasalizadeh F, Moghaddam S V, Alizadeh E, et al. Journal of Biological Engineering, 2020, 14(1), 22.
8 Lu X Y. Construction and functional applications of elastic electrospun nanofibrous hydrogels. Ph.D. Thesis, Donghua University, China, 2023 (in Chinese).
卢绪燕. 弹性静电纺纳米纤维基水凝胶的构建及其功能化应用研究. 博士学位论文, 东华大学, 2023.
9 Miguel S P, Figueira D R, Simoes D, et al. Colloids and Surfaces B, 2018, 169, 60.
10 Li Q, Chen R, Cui T T, et al. Advanced Healthcare Materials, 2024, 13, 2304321.
11 Si Y F, Shi S, Hu J L. Matter, 2024, 7(4), 1373.
12 Azarniya A, Tamjid E, Eslahi N, et al. International Journal of Biological Macromolecules, 2019, 134, 280.
13 Ekaputra A K, Prestwich G D, Cool S M, et al. Biomaterials, 2011, 32(32), 8108.
14 Deepthi S, Jeevitha K, Sundaram M N, et al. Chemical Engineering Journal, 2015, 260, 478.
15 Zhang M M, Xu S X, Du C, et al. Colloids and Surfaces B, 2023, 222, 113119.
16 Deepthi S, Sundaram M N, Kadavan J D, et al. Carbohydrate Polymers, 2016, 153, 492.
17 Wang T Y, Bruggeman K F, Kauhausen J A, et al. Biomaterials, 2016, 74, 898.
18 Chen Y J, Qin H L, Mensaha A, et al. Composites Part B, 2021, 222, 109071.
19 Karimi S, Bagher Z, Najmoddin N, et al. International Journal of Biological Macromolecules, 2021, 167, 796.
20 Wang M, Xiong L, Hua W K, et al. Chemical Engineering Journal, 2018, 348, 95.
21 Zhang T, Xu H, Zhang Y G, et al. Materials & Design, 2022, 218, 110711.
22 Arumugam M, Murugesan B, Chinnalagu D, et al. Journal of Polymers and the Environment, 2024, 32(6), 2797.
23 Yin X Q, Wen Y, Li Y J, et al. Frontiers in Chemistry, 2018, 6, 490.
24 Lu Z, Cui J J, Liu F K, et al. Advanced Healthcare Materials, 2024, 13(10), 2303499.
25 Zhang Y L, Ruan K P, Zhou K, et al. Advanced Materials, 2023, 35(16), 2211642.
26 Tavakoli M, Al-Musawi M H, Kalali A, et al. International Journal of Biological Macromolecules, 2024, 265, 130954.
27 Miguel S P, Cabral C S D, Moreira A F. Colloids and Surfaces B, 2019, 181, 994.
28 Guo W R, Li Z, Liu B, et al. Progress in Chemistry, 2024, 36(6), 914 (in Chinese).
郭婉茹, 李政, 刘兵, 等. 化学进展, 2024, 36(6), 914.
29 Homayoni H, Ravandi S A H, Valizadeh M. Carbohydrate Polymers, 2009, 77(3), 656.
30 Brenner E K, Schiffman J D, Thompson E A, et al. Carbohydrate Polymers, 2012, 87(1), 926.
31 Matthews J, Wnek G, Simpson D G, et al. Biomacromolecules, 2002, 3, 232.
32 Yang G, Lin H, Rothrauff B B, et al. Acta Biomaterialia, 2016, 35, 68.
33 Cay A, Miraftab M. Journal of Applied Polymer Science, 2013, 129(6), 3140.
34 Wang M, Li X, Hua W K, et al. ACS Applied Materials & Interfaces, 2016, 8(36), 23995.
35 Lv H, Wang X Q, Fu Q X, et al. Journal of Colloid and Interface Science, 2017, 506, 442.
36 Tonsomboon K, Oyen M L. Journal of The Mechanical Behavior of Biomedical Materials, 2013, 21, 185.
37 Liu X, Liu Y, Du J, et al. Engineered Regeneration, 2021, 2, 63.
38 Molnar K, Jedlovszky-Hajdu A, Zrinyi M, et al. Macromolecular Rapid Communications, 2017, 38, 1.
39 Li S J, Zhang C D. Textile Research Journal, 2020(2), 20 (in Chinese).
李思捷, 张彩丹. 纺织学报, 2020(2), 20.
40 Tsegay F, Hisham M, Elsherif M, et al. Molecules, 2023, 28(3), 1339.
41 Hong L, Qiu P, Niu S N, et al. Advanced Fiber Materials, 2024, 6(5), 1413.
42 Peng Y Y, Lyu D, Luo F, et al. Polymer Bulletin, 2024(6), 713 (in Chinese).
彭园园, 吕丹, 罗锋, 等. 高分子通报, 2024(6), 713.
43 Shi Z J, Gao X, Ullah M W, et al. Biomaterials, 2016, 111, 40.
44 Bhattarai N, Gunn J, Zhang M Q. Advanced Drug Delivery Reviews, 2010, 62(1), 83.
45 Mendibil U, Ruiz-Hernandez R, Retegi-Carrion S, et al. International Journal of Molecular Sciences, 2020, 21(15), 5447.
46 Rippa A L, Kalabusheva E P, Vorotelyak E A. Cells, 2019, 8(6), 607.
47 Li D W, Dong X Y, Liu X, et al. Carbohydrate Polymers, 2024, 329, 121687.
48 Ailincai D, Cibotaru S, Anisiei A, et al. Carbohydrate Polymers, 2023, 318, 121135.
49 Zhong H L, Huang J, Luo M C, et al. Nano Research, 2023, 16, 599.
50 Zhang H, Sun L Y, Guo J H, et al. Research, 2023, 8, 129.
51 Zhang C D, Yang X, Yu L D, et al. Materials & Design, 2024, 239, 112818.
[1] 杨卫, 徐呈祥, 陈则胜, 聂正稳, 董兵海. 基于生物聚合物伤口敷料的研究及应用进展[J]. 材料导报, 2022, 36(Z1): 21100217-5.
[2] 王通, 王广飞, 张淑敏, 曲承蕾, 李诚博, 高永林. 基于天然多糖的水凝胶伤口敷料的研究进展[J]. 材料导报, 2022, 36(6): 20060050-9.
[3] 孙晓霞, 鲍艺, 彭黔荣, 陈亭羽, 卢小鸾, 杨敏. 角蛋白生物材料在创伤愈合中的应用研究进展[J]. 材料导报, 2020, 34(7): 7161-7167.
[4] 林琳, 陈景民, 王会, 李久盛, 陈晋阳, 曾祥琼. 皮肤敷料的研究进展[J]. 材料导报, 2019, 33(1): 65-72.
[1] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[2] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[3] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
[4] SHANG Genfeng, HUANG Jiapeng, WANG Hang. Study on Cyclic Oxidation Behavior of Y and La Modified Ni-10Cr-5Al Alloys[J]. Materials Reports, 2018, 32(4): 584 -588 .
[5] LI Yanli, XU Zhuang, LI Hui, KONG Xiangdong, HAN Li, ZHANG Xuena. Preparation of ZnO Thin Films by Electron Beam Annealing Method[J]. Materials Reports, 2017, 31(2): 41 -45 .
[6] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[7] CHEN Yajun, YU Jiaqi, ZHAO Jieyu, WANG Fusheng. Research and Development of High Temperature Solid Self-lubricanting Coating Prepared by Magnetron Sputtering[J]. Materials Reports, 2017, 31(3): 32 -37 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] XIE Fei, WANG Dan, WU Ming, ZONG Yue, YUAN Shijiao, SHEN Hongjuan, LI Rui. Effect of Sulfate Reducing Bacteria in Seawater on Corrosion Behavior of Q235 Steel[J]. Materials Reports, 2017, 31(8): 51 -55 .
[10] TAN Cao, DUAN Hongjuan, WANG Junkai, ZHANG Haijun, LIU Jianghao. Preparation of ZrB2 Ultrafine Powders via Molten-salt-mediated Magnesiothermic Reduction[J]. Materials Reports, 2017, 31(8): 109 -112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed