Please wait a minute...
材料导报  2024, Vol. 38 Issue (13): 22120143-6    https://doi.org/10.11896/cldb.22120143
  高分子与聚合物基复合材料 |
暂堵剂用聚乳酸/聚乙醇酸复合纤维的制备及降解性能研究
吴鹏飞, 崔华帅, 朱金唐*, 史贤宁, 崔宁, 李杰, 黄庆
中国纺织科学研究院有限公司,生物源纤维制造技术国家重点实验室,北京 100025
Study on Preparation and Degradation of PLA/PGA Composite Fiber for Temporary Plugging Agent
WU Pengfei, CUI Huaishuai, ZHU Jintang*, SHI Xianning, CUI Ning, LI Jie, HUANG Qing
State Key Laboratory of Biobased Fiber Manufacturing Technology, China Textile Academy Co., Ltd., Beijing 100025, China
下载:  全 文 ( PDF ) ( 7220KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 暂堵剂是石油气开采中增产的重要材料,随着环保要求的提高,可降解暂堵剂材料已成为当前石油气开采中的首选材料。聚乙醇酸作为降解速率最快且最简单的线性脂肪族聚酯,由其制成的可降解暂堵绳结已在石油气开采中得到应用。但聚乙醇酸存在降解速率快、货架期短等问题,大大限制了其产品的推广使用。本工作采用复合熔融纺丝法制备了以聚乳酸为皮层、聚乙醇酸为芯层的圆形截面皮芯复合纤维,研究了不同皮芯比例聚乳酸/聚乙醇酸复合纤维的形貌、降解性能、热性能和结晶性。结果表明:复合纤维在70 ℃下的溶解率“转折点”出现在降解6 h时,降解前6 h内,复合纤维的溶解率都在3%(质量分数)以内;降解6 h后,复合纤维的溶解率几乎呈线性升高,皮芯比例为20/80的复合纤维降解24 h后,溶解率可以达到23.2%。扫描电镜照片显示,复合纤维降解24 h后,聚乳酸层厚度越小,纤维降解程度越高,在皮芯比例为20/80的复合纤维中,聚乳酸层大量开裂,造成芯层的聚乙醇酸沿纤维轴向降解断裂成小段。热性能结果显示,聚乳酸结晶度随降解时间延长而增大,而聚乙醇酸结晶度随降解时间延长先增大后减小。广角X射线衍射结果显示,复合纤维中聚乙醇酸晶粒尺寸较小,尤其是c轴长度仅为约34 nm。纤维强度保持率和降解液的pH值都与皮层厚度成正比。本工作为暂堵剂制备提供了新途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴鹏飞
崔华帅
朱金唐
史贤宁
崔宁
李杰
黄庆
关键词:  聚乳酸  聚乙醇酸(PGA)  皮芯复合纤维  暂堵剂  降解性能    
Abstract: Temporary plugging agent is an important material for increasing production in oil and gas exploitation. With the improvement of environmental protection requirements, biodegradable temporary plugging agent material has become the preferred material in current oil and gas exploitation. Polyglycolic acid is the simplest linear aliphatic polyester with the fastest degradation rate. The degradable temporary plugging knot made of polyglycolic acid has been applied in oil and gas exploitation. However, polyglycolic acid has some problems, such as fast degradation rate and short shelf life, which greatly limit its application. In this work, the sheath-core composite fiber with ‘O’ profile was prepared by composite melt spinning method with poly(lactic acid) as the sheath and poly(glycolic acid) as the core layer. The morphology, degradation, thermal properties and crystallinity of the composite fibers with different sheath/core ratios were studied. The results showed that the ‘turning point’ of the dissolution rate of composite fibers at 70 ℃ was at 6 h of degradation. Before this point, the dissolution rate of composite fibers was within 3wt%, and then, the dissolution rate of composite fibers was almost increased linearly. After, the dissolution rate of composite fibers with sheath/core ratio of 20/80 could reach 23.2% after 24 h of degradation. The scanning electron microscope photos showed that after 24 h of degradation, the smaller the thickness of the polylactic acid layer, the higher the degree of fiber degradation. In the composite fiber with a sheath/core ratio of 20/80, the polylactic acid layers cracked, causing the polyglycolic acid in the core layer to degrade and break into small segments along the fiber axis. The results of thermal properties showed that the crystallinity of polylactic acid increased with degradation time, while the crystallinity of polyglycolic acid increased first and then decreased with degradation time. The results of wide-angle X-ray diffraction showed that the grain size of polyglycolic acid is small, especially the length of grain along c-axis was only about 34 nm. The strength retention rate of fibers and the pH value of the degradation solution are directly proportional to the thickness of the sheath layer. This work provides a new way to prepare temporary plugging agent.
Key words:  polylactic acid    polyglycolic acid(PGA)    sheath-core composite fiber    temporary plugging agent    degradation properties
出版日期:  2024-07-10      发布日期:  2024-08-01
ZTFLH:  TQ340.64  
基金资助: 江西省重点研发计划项目 (S2022ZPYFE0235)
通讯作者:  *朱金唐,2013年在北京师范大学获得博士学位,现就职于中国纺织科学研究院有限公司。目前主要从事高性能纤维、生物基/可降解纤维材料等方面的研究工作,发表论文20余篇。zhujintang@cta.gt.cn   
作者简介:  吴鹏飞,2006年在北京服装学院获得硕士学位,高级工程师,现就职于中国纺织科学研究院有限公司。主要研究领域为高性能纤维、生物基/可降解纤维的熔融纺丝技术开发,发表论文20余篇,获得授权专利14项。
引用本文:    
吴鹏飞, 崔华帅, 朱金唐, 史贤宁, 崔宁, 李杰, 黄庆. 暂堵剂用聚乳酸/聚乙醇酸复合纤维的制备及降解性能研究[J]. 材料导报, 2024, 38(13): 22120143-6.
WU Pengfei, CUI Huaishuai, ZHU Jintang, SHI Xianning, CUI Ning, LI Jie, HUANG Qing. Study on Preparation and Degradation of PLA/PGA Composite Fiber for Temporary Plugging Agent. Materials Reports, 2024, 38(13): 22120143-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120143  或          http://www.mater-rep.com/CN/Y2024/V38/I13/22120143
1 Zhang D J, Qu C Y, Li X W, et al. Polymer Science Series B, 2014, 56(5), 686.
2 Zhao G, Dai C, Li W, et al. Journal of Petroleum Exploration and Production Technology, 2016, 6(3), 465.
3 Jia H, Yang X Y. Asia-Pacific Journal of Chemical Engineering, 2018, 14(1), e2270.
4 Bai X, Yong X, Luo Y, et al. Journal of Applied Polymer Science, 2022, 139(28), e52524.
5 Zhou H, Wu X, Song Z, et al. Journal of Petroleum Science and Engineering, 2022, 212, 110256.
6 Wang Jiwei, Kang Yuzhu, Zhang Dianwei, et al. Special Oil & Gas Reservoirs, 2021, 28(5), 1(in Chinese).
王纪伟, 康玉柱, 张殿伟, 等. 特种油气藏, 2021, 28(5), 1.
7 Xu J, Wang J, Wang M, et al. Chemistry and Technology of Fuels and Oils, 2022, 58, 544
8 Zhao L, Chen X, Zou H, et al. Journal of Petroleum Science and Engineering, 2020, 187, 106734.
9 Schultz R L, Watson B W, Ferguson A M, et al. U. S. patent application, US9523267, 2016.
10 Xiong C, Shi Y, Zhou F, et al. Petroleum Exploration and Development, 2018, 45(5), 948.
11 Oca H, Ward I M. Polymer, 2006, 47(20), 7070.
12 Fambri L, Pegoretti A, Fenner R, et al. Polymer, 1997, 38(1)79.
13 Pitt G G, Gratzl M M, Kimmel G L, et al. Biomaterials, 1981, 2(4), 215.
14 Chen S, Zhang X, He M, et al. Journal of Materials Research, 2020, 35(14), 1846.
15 Cui Huashuai, Wu Pengfei, Zhou Jie, et al. China Textile Leader, 2017, (8), 39 (in Chinese).
崔华帅, 吴鹏飞, 周杰, 等. 纺织导报, 2017, (8), 39.
16 Cui Huashuai, Zhou Jie, Wu Pengfei, et al. Synthetic Fiber in China, 2017, 46(9), 15(in Chinese).
崔华帅, 周杰, 吴鹏飞, 等. 合成纤维, 2017, 46(9), 15.
[1] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[2] 李亮, 刘淑萍, 裴斐斐, 杨雷锋, 刘让同. 载中药聚乳酸多孔纳米纤维医用敷料[J]. 材料导报, 2024, 38(10): 22080169-7.
[3] 王洋样, 云雪艳, 周紫怡, 袁帅, 孙滔, 阿拉塔, 董同力嘎. 微相分离结构对聚乳酸薄膜性能的调控及其在巨峰葡萄保鲜中的应用[J]. 材料导报, 2023, 37(9): 21080286-10.
[4] 张定军, 韩筱, 朱金龙, 杨世元, 赵文锦. 反相微乳液聚合法制备的(AA-AM-C18DMAAC-St)四元共聚感温凝胶微球[J]. 材料导报, 2022, 36(5): 20120204-6.
[5] 刘济民, 朱慧敏, 潘健, 宋力雅, 刘珊, 花亚冰, 石锐, 徐亮. 新型可生物降解的组织可黏附材料的合成与表征[J]. 材料导报, 2022, 36(3): 20120176-6.
[6] 张定军, 张晟祥, 包亮军, 魏芳, 李文杰. 一种感温聚合物复合凝胶暂堵剂的制备及性能研究[J]. 材料导报, 2022, 36(23): 21050244-6.
[7] 叶小林, 许志彦, 侯泽明, 王建航, 谭芳, 张道海, 蔡晓东, 周国永, 吴中立, 宝冬梅. 聚乳酸/DOPS衍生物阻燃复合材料的非等温热降解动力学研究[J]. 材料导报, 2022, 36(19): 21090131-6.
[8] 段瑞侠, 陈金周, 刘文涛, 何素琴, 刘浩, 黄淼铭, 朱诚身. 聚乳酸基压电材料的研究和应用[J]. 材料导报, 2022, 36(10): 20080234-8.
[9] 毛龙, 谢建达, 雷永振, 范淑红, 刘跃军. 贻贝仿生构建聚乳酸多层复合薄膜及其性能[J]. 材料导报, 2021, 35(16): 16178-16183.
[10] 黄爱宾, 刘彩凤, 张晓惠. 聚乳酸共混的研究进展[J]. 材料导报, 2020, 34(Z2): 586-589.
[11] 陈康, 何啸宇, 李文豪, 吴义强, 李新功, 左迎峰. 乳酸接枝竹纤维/聚乳酸复合材料的制备与性能表征[J]. 材料导报, 2020, 34(20): 20171-20176.
[12] 赵中国, 张鑫, 程少华, 王渺, 梁攀旭, 李万顺, 贾仕奎. 高熔体强度聚乳酸的结晶和发泡性能[J]. 材料导报, 2020, 34(20): 20182-20186.
[13] 王珊珊, 赵磊, 周海瑛, 李文珠, 张文标. 次磷酸铝对竹炭/聚乳酸复合材料阻燃和力学性能的影响[J]. 材料导报, 2020, 34(14): 14214-14217.
[14] 师盟盟, 罗发亮. PLLA/TPEE/TMC-210三元复合材料的制备及性能研究[J]. 材料导报, 2020, 34(12): 12191-12195.
[15] 刘玉玲, 张修庆. Fe-Mn合金在生物医学方面的应用及前景[J]. 材料导报, 2019, 33(Z2): 331-335.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed