Please wait a minute...
材料导报  2018, Vol. 32 Issue (20): 3667-3672    https://doi.org/10.11896/j.issn.1005-023X.2018.20.030
  中国材料大会——环境工程材料 |
废锂电池负极全组分绿色回收与再生
程前, 张婧
厦门理工学院环境科学与工程学院,福建省农村污水处理与用水安全工程研究中心,厦门 361024;
Green Recovery and Regeneration of All-components of the Anode from Spent Lithium Ion Batteries
CHENG Qian, ZHANG Jing
Fujian Engineering and Research Center of Rural Sewage Treatment and Water Safety, School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024;
下载:  全 文 ( PDF ) ( 3286KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以三氟乙酸溶液为溶剂,对废锂电池负极片中的铜箔、石墨及锂元素进行了综合回收试验研究,考察了不同实验条件对各组分回收效果的影响,并采用 XRD、SEM 和 FTIR 等手段对再生产物进行了表征。结果表明,经酸浸后,铜箔表面干净光亮,其回收率可达100%;石墨(锂离子浸出最佳酸浸条件下过滤所得的石墨)呈现出典型的层状结构特征,且纯度高、无杂质,其回收率约为 96.3%;在三氟乙酸浓度为 15%(体积分数)、固液比为 60 g/L、浸出温度为 40 ℃、浸出时间为 30 min的实验条件下,浸出液中锂离子的最大浸出质量分数为1.08%。经除杂后浸出液中锂元素的再生产物为纯相碳酸锂,其产率为 95.6%。实验中三氟乙酸溶剂可通过蒸馏的方式循环利用。整个工艺流程简单,绿色环保。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程前
张婧
关键词:  废锂电池  负极  全组分  三氟乙酸  回收  再生    
Abstract: For the comprehensive recovery of copper foil, graphite and lithium from the anode of spent lithium ion batteries,trifluoroacetic acid was employed as the leaching agent. The effects of different experimental conditions on the recovery rate of all-components were investigated. XRD, SEM and FTIR were used to analyze the regenerated products. The results showed that the surface of copper foil was clean and bright after acid leaching. Up to 100% copper foil could be recovered. The graphite that filtered under the optimum condition of acid leaching for Li+ exhibited typical layer structure characteristics with high purity. The recovery rate of graphite was about 96.3%. The maximum leaching rate of Li+ was 1.08% under the following leaching conditions: trifluo-roacetic acid concentration of 15% (vol%), solid-to-liquid ratio of 60 g/L, leaching temperature of 40 ℃ and the leaching time of 30 min. The regenerated product of Li was lithium carbonate with high purity after removal of impurity from leaching solution, and its yield was 95.6%. Trifluoroacetic acid could be recycled by distillation. The whole process was simple and green.
Key words:  spent lithium ion batteries    anode    all-components    trifluoroacetic acid    recovery    regeneration
               出版日期:  2018-10-25      发布日期:  2018-11-22
ZTFLH:  X705  
基金资助: 福建省农村污水处理与用水安全工程研究中心开放基金(RST201802);福建省教育厅中青年科研项目(JAT170431);福建省科技厅引导性项目(2016H01010099)
作者简介:  程前:女,1984年生,硕士,实验师,主要从事废旧锂离子电池绿色回收与资源化应用研究 E-mail:chengq@xmut.edu.cn
引用本文:    
程前, 张婧. 废锂电池负极全组分绿色回收与再生[J]. 材料导报, 2018, 32(20): 3667-3672.
CHENG Qian, ZHANG Jing. Green Recovery and Regeneration of All-components of the Anode from Spent Lithium Ion Batteries. Materials Reports, 2018, 32(20): 3667-3672.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.20.030  或          http://www.mater-rep.com/CN/Y2018/V32/I20/3667
1 Wu N N, Wu K, Gao Y, et al. Advantages of lithium ion batteries in energy storage field [J]. Advance Materials Industry,2010(10):48(in Chinese).
吴宁宁,吴可,高雅,等.锂离子电池在储能领域的优势[J].新材料产业,2010(10):48.
2 Masoud M T, Dahmardeh M. A novel power distribution system employing state of available power estimation for a hybrid energy storage system [J]. IEEE Transactions on Industrial Electronics,2018,65(8):6676.
3 Qu D X, Liu X Q. Review and prospect of recovery of spent lithium ion batteries [J]. World Nonferrous Metal,2017(4):218(in Chinese).
曲冬雪,刘秀庆.废旧锂离子电池回收前景分析与方法[J].世界有色金属,2017(4):218.
4 Xi G X, Jiao Y Z, Lu M X. Research on preparation of cobalt ferrite from spent lithiumion batteries with sol-gel method [J]. Materials Review,2008,22(10):127(in Chinese).
席国喜,焦玉字,路迈西.废旧锂离子电池溶胶-凝胶法制备钴铁氧体的研究[J].材料导报,2008,22(10):127.
5 Lv W, Wang Z, Cao H, et al. A critical review and analysis on the recycling of spent lithium-ion batteries [J]. ACS Sustainable Che-mistry & Engineering,2018,6(2):1504.
6 He L P, Sun S Y, Song X F, et al. Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2 cathode of lithium-ion batteries [J]. Waste Management,2017,64:171.
7 Li L, Fan E, Guan Y, et al. Sustainable recovery of cathode mate-rials from spent lithium-ion batteries using lactic acid leaching system [J]. ACS Sustainable Chemistry & Engineering,2017,5(6):5224.
8 Wang G X, Li J, Xu Z M. Recycling valuable metals from spent lithium ion batteries [J]. Materials Review,2015,29(4):113(in Chinese).
王光旭,李佳,许振明.废旧锂离子电池中有价金属回收工艺的研究进展[J].材料导报,2015,29(4):113.
9 Xu J Q, Thomas H R, Francis R W. A review or processes and technologies for the recycling of lithium-ion secondary batteries [J]. Journal of Power Sources,2008,177(2):512.
10 Xia J, Zhang Z M, He W Z, et al. Characterization and analysis of the negative electrode active materials in spent lithium-ion secondary batteries [J]. Chemical Industry and Engineering Progress,2013,32(11):2783(in Chinese).
夏静,张哲鸣,贺文智,等.废锂离子电池负极活性材料的分析测试[J].化工进展,2013,32(11):2783.
11 Rothermel S, Evertz M, Kasnatscheew J, et al. Graphite recycling from spent lithium-ion batteries [J]. ChemSusChem,2016,9(24):3473.
12 Chen X, Zhu Y, Peng W, et al. Direct exfoliation of the anode graphite of used Li-ion batteries into few-layer graphene sheets: A green and high yield route to high-quality graphene preparation[J]. Journal of Materials Chemistry A,2017,5(12):5880.
13 Zhang W, Liu Z, Xia J, et al. Preparing graphene from anode graphite of spent lithium-ion batteries [J]. Frontiers of Environmental Science & Engineering,2017,11(5):6.
14 Zhao L, Liu X, Wan C, et al. Soluble graphene nanosheets from recycled graphite of spent lithium ion batteries Batteries [J]. Journal of Materials Engineering and Performance,2018,27(2):875.
15 Natarajan S, Rao Ede S, Bajaj H C, et al. Environmental benign synthesis of reduced graphene oxide (rGO) from spent lithium-ion batteries (LIBs) graphite and its application in supercapacitor [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2018,543:98.
16 Moradi B, Botte G G. Recycling of graphite anodes for the next ge-neration of lithium ion batteries [J]. Journal of Applied Electroche-mistry,2015,46(2):123.
17 Ma Z, Zhuang Y, Deng Y, et al. From spent graphite to amorphous sp2+sp3 carbon-coated sp2 graphite for high-performance lithium ion batteries [J]. Journal of Power Sources,2018,376:91.
18 Cao Z, Zheng X, Cao H, et al. Efficient reuse of anode scrap from lithium-ion batteries as cathode for pollutant degradation in electro-Fenton process: Role of different recovery processes [J]. Chemical Engineering Journal,2018,337:256.
19 Natarajan S, Bajaj H C. Recovered materials from spent lithium-ion batteries (LIBs) as adsorbents for dye removal: Equilibrium, kine-tics and mechanism [J]. Journal of Environmental Chemical Engineering,2016,4(4):4631.
20 Zhou X, Zhu S G, Cixi L M, et al. Mechanical separation and reco-very process of anode materials from spent lithium-ion batteries [J]. The Chinese Journal of Nonferrous Metals,2011,21(12):3082(in Chinese).
周旭,朱曙光,次西拉姆,等.废锂离子电池负极材料的机械分离与回收[J].中国有色金属学报,2011,21(12):3082.
21 Lu Y P, Xia Z F, Feng Q M, et al. Separation of current collectors and active materials from spent lithium-ion secondary batteries [J]. The Chinese Journal of Nonferrous Metals,2007,17(6):997(in Chinese).
卢毅屏,夏自发,冯其明,等.废锂离子电池中集流体与活性物质的分离[J].中国有色金属学报,2007,17(6):997.
22 Guo Y, Li F, Zhu H, et al. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl) [J]. Waste Management,2016,51:227.
23 Liu Z P, Guo Y, He W Z, et al. The leaching of lithium of anode active material in spent lithium ion battery [J]. Environmental Science & Technology,2015,38(12q):93.
24 Zhang X, Xie Y, Cao H, et al. A novel process for recycling and resynthesizing LiNi1/3Co1/3Mn1/3O2 from the cathode scraps intended for lithium-ion batteries [J]. Waste Management,2014,34:1715.
25 Li J, Wang G, Xu Z. Environmentally-friendly oxygen-free roasting wet magnetic separation technology for in situ recycling cobalt, lit-hium carbonate and graphite from spent LiCoO2 graphite lithium batteries [J]. Journal of Hazardous Materials,2016,302:97.
26 Rong Z, Li Z K, Yang S Z, et al. Review of carbon anode materials for lithium ion batteries [J]. Guangdong Chemical Industry,2018,45(2):117(in Chinese).
戎泽,李子坤,杨书展,等.锂离子电池用碳负极材料综述[J].广东化工,2018,45(2):117.
27 Matsuo Y, Fumita K, Fukutsuka T, et al. Butyrolactone derivatives as electrolyte additives for li-ion batteries with graphite anode [J]. Journal of Power Sources,2003,119-121(2):373.
28 Leite D D S, Carvalho P L G, De Lemos L R, et al. Hydrometallurgical separation of copper and cobalt from lithium-ion batteries using aqueous two-phase systems [J]. Hydrometallurgy,2017,169:245.
29 Jha M K, Kumari A, Jha A K, et al. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone [J]. Waste Ma-nagement,2013,33:1890.
[1] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[2] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[3] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[4] 刘新华, 储兆洋, 李永, 郑宏亮, 方寅春. 含聚甲基丙烯酸二甲氨基乙酯刷的羽毛接枝共聚物的制备及性能[J]. 材料导报, 2019, 33(2): 342-346.
[5] 吕政桦, 申爱琴, 李悦, 郭寅川, 喻沐阳. 基于遗传优化的乳化沥青冷再生混合料的疲劳性能及机理研究[J]. 材料导报, 2019, 33(16): 2704-2709.
[6] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[7] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[8] 闫霆, 王文欢, 王如竹. 化学吸附储热技术的研究现状及进展[J]. 材料导报, 2018, 32(23): 4107-4115.
[9] 王莹, 李勇, 朱靖, 赵亚茹, 李焕. 石墨烯/CuO锂离子电池负极材料的研究进展[J]. 材料导报, 2018, 32(21): 3712-3719.
[10] 周头军,李家节,郭诚君,丁云峰,陈金水. 回收制备烧结Nd-Fe-B磁体的磁性能与耐热性能[J]. 《材料导报》期刊社, 2018, 32(2): 180-183.
[11] 李文超, 唐仁衡, 王英, 王华昆, 肖方明, 黄玲. 锂离子电池SiOx/C/CNTs复合负极材料的制备及其电化学性能[J]. 材料导报, 2018, 32(17): 2920-2924.
[12] 梁杰铬, 罗政, 闫钰, 袁斌. 面向可充电电池的锂金属负极的枝晶生长:理论基础、影响因素和抑制方法[J]. 《材料导报》期刊社, 2018, 32(11): 1779-1786.
[13] 丁昂, 张钟元, 程厅, 董星龙. 中空硅纳米球锂离子电池负极材料的制备及电化学性能[J]. 《材料导报》期刊社, 2018, 32(11): 1791-1794.
[14] 刘欢, 华中胜, 何几文, 唐泽韬, 张伟伟, 吕辉鸿. 废弃氧化铟锡中铟的回收技术综述[J]. 《材料导报》期刊社, 2018, 32(11): 1916-1923.
[15] 陈坚, 徐晖. 石墨烯及其纳米复合材料作为锂离子电池负极的研究进展*[J]. CLDB, 2017, 31(9): 36-44.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed