Please wait a minute...
材料导报  2024, Vol. 38 Issue (22): 23100252-7    https://doi.org/10.11896/cldb.23100252
  金属与金属基复合材料 |
长输管道环焊缝DR检测系统评定试验研究
王长江1,2, 王雪3, 张仕民1, 赵岩2, 吕新昱3, 仲谦4, 周广言3,*
1 中国石油大学(北京)机械与储运工程学院,北京 102249
2 国家管网集团工程技术创新有限公司,天津 300450
3 中国石油天然气管道科学研究院有限公司,河北 廊坊 065000
4 国家石油天然气管网集团有限公司工程部,北京 100020
Evaluation Test Research of DR Inspection System for Circumferential Welds in Long Distance Pipeline
WANG Changjiang1,2, WANG Xue3, ZHANG Shimin1, ZHAO Yan2, LYU Xinyu3, ZHONG Qian4, ZHOU Guangyan3,*
1 College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China
2 Pipe China Engineering Technology Innovation Co., Ltd., Tianjin 300450, China
3 China Petroleum Pipeline Research Institute Co., Ltd., Langfang 065000, Hebei, China
4 Engineering Department of National Petroleum and Natural Gas Pipeline Network Group Co., Ltd., Beijing 100020, China
下载:  全 文 ( PDF ) ( 2827KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 数字射线检测设备已经开始在石油天然气管道环焊缝检测中大规模推广应用,为建立完善的数字射线检测质量控制体系,充分评价设备、人员以及工艺一体化的系统检测能力,需要建立一套科学规范化的评价方法。本工作结合国内外相关无损检测评价方法先例以及DR设备的检测特性,制定了一套完整的DR检测系统评定程序,深入研究了程序流程从缺陷制作到切片加工及数据统计计算等项目对于数字射线检测评价的适应性方法。并制作了五条工艺焊缝,对200个真实缺陷进行金相加工,对检测系统的重复性、可靠性进行了客观、全面的评价。该试验结果中DR系统图像质量重复性良好,在95%置信度下达到90%检出率,缺陷尺寸达0.85 mm,长度定量误差在±2 mm之内,缺陷定位误差在±5 mm之内,缺陷定性及检出定量准确可靠。试验进一步证实了DR检测系统的可靠检测能力,同时充分验证了文章设计的系统评定方法的科学性、实用性。该评定试验的方法研究,可以作为长输管道数字射线设备现场应用质量控制体系的重要环节,设计的程序、试验及评价内容可以作为相关规范或标准制定的重要依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王长江
王雪
张仕民
赵岩
吕新昱
仲谦
周广言
关键词:  数字射线  评定试验  重复性  可靠性    
Abstract: Digital radiographic(DR) testing equipment has been widely promoted and applied in the inspection of circumferential welds in oil and gas pipelines. In order to establish a comprehensive quality control system for digital radiographic testing and fully evaluate the integrated system inspection ability of equipment, personnel, and processes, a scientific and standardized evaluation method to the system is very necessary. Here investigates the precedents of relevant non-destructive testing evaluation methods at home and abroad, considers the testing characteristics of DR equipment, develops a complete set of DR testing system evaluation procedures. It deeply studies the adaptability methods of program processes from defect production to slicing processing and data statistical calculation for digital radiographic testing evaluation. To check the repeatability and reliability of the detectable system, five process welds with 200 real metallographic defects were fabricated in the laboratory. From the detected results, the DR system has good repeatability in image quality, and the detectable defect size reaches 0.85 mm under achieving 90% detection probability at a confidence level of 95%, the error of detected defect length is ±2 mm, and the error of detected defect localization is ±5 mm. The qualitative and quantitative detection of defects are accurate and reliable. The test further confirmed the reliable detection ability of the DR detection system, and fully validated the scientific and practical evaluation method designed. The research on the evaluation test method can serve as an important link in the quality control system for the on-site application of digital ray equipment in long-distance pipelines. The designed program, test, and evaluation content can serve as an important basis for the formulation of relevant specifications or standards.
Key words:  digital ray    evaluation test    repeatability    reliability
出版日期:  2024-11-25      发布日期:  2024-11-22
ZTFLH:  TE973.6  
基金资助: 国家石油天然气管网集团有限公司科学研究与技术开发项目(SJSG202201)
引用本文:    
王长江, 王雪, 张仕民, 赵岩, 吕新昱, 仲谦, 周广言. 长输管道环焊缝DR检测系统评定试验研究[J]. 材料导报, 2024, 38(22): 23100252-7.
WANG Changjiang, WANG Xue, ZHANG Shimin, ZHAO Yan, LYU Xinyu, ZHONG Qian, ZHOU Guangyan. Evaluation Test Research of DR Inspection System for Circumferential Welds in Long Distance Pipeline. Materials Reports, 2024, 38(22): 23100252-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23100252  或          http://www.mater-rep.com/CN/Y2024/V38/I22/23100252
1 Li B S, Wang X L, Xu B, et al. Oil & Gas Storage and Transportation, 2019, 38(3), 241(in Chinese).
2 Jiang C L. Oil & Gas Storage and Transportation, 2020, 39(2), 121(in Chinese).
3 Lv X Y, Li W, Zhou G Y, et al. Nondestructive Testing, 2019, 41(2), 48(in Chinese).
4 Ji H, Fan Y, Sun L H, et al. Nondestructive Testing, 2021, 43(3), 85(in Chinese).
5 Ou Y S. Plant Maintenance Engineering, 2022(13), 32(in Chinese).
6 Zu Y Z. Shanxi Chemical Industry, 2021, 41(1), 71(in Chinese).
7 Dong X Y. Research on the digital X-ray imaging system(DR system). Master's Thesis, Beijing Jiaotong University, China, 2010(in Chinese).
8 Zhou G Y, Zheng N, Liu Q L, et al. Nondestructive Testing, 2017, 39(11), 62(in Chinese).
9 Wang X, Xue Y, Zhou G Y, et al. Nondestructive Testing, 2020, 42(5), 75(in Chinese).
10 Zhang J J, Pei B, Zhao M D, et al. Nondestructive Testing, 2020, 42(8), 30(in Chinese).
11 Zhang H L, Zang T T. Nondestructive Testing, 2022, 46(6), 19(in Chinese).
12 Chen J. Total Corrosion Control, 2021, 35(5), 47(in Chinese).
13 Liu Q L, Miao H, Lv X Y, et al. Oil & Gas Storage and Transportation, 2020, 39(4), 453(in Chinese).
14 Lei Z Q, Wang W B, Wen Y F, et al. Pipeline Technique and Equipment, 2021(1), 52(in Chinese).
15 Hu Y H, Jiang W X, Zhan S F. Journal of Waterway and Harbor, 2020, 41(6), 744(in Chinese).
16 Zhang J. Research on the acoustic field calculation and inspection reliability of ultrasonic test. Ph. D. Thesis, Wuhan University, China, 2015(in Chinese).
17 Hu Y H, Wu Q, Niu H L, et al. Petroleum Engineering Construction, 2018, 44(3), 58(in Chinese).
18 Feng Z Y, Li Z X. Nondestructive Testing, 2010, 32(4), 249(in Chinese).
19 Li Y Y. Initial exploration on the reliability of phased array ultrasonic testing and numerical simulation of POD. Master's Thesis, Dalian University of Technology, China, 2015(in Chinese).
20 Zhong W Q, Tao S P. China Plant Engineering, 2020(19), 137(in Chinese).
21 Zhang H L, Li J, Bai Z J, et al. In: 2015 far east non-destructive testing new technology forum-collection of non-destructive testing papers based on big data. Beijing, 2015, pp.10(in Chinese).
22 Hu J D, Liang L H, Liu X M, et al. Acta Optica Sinica, 2021, 41(10), 230(in Chinese).
[1] 杜伟, 强军锋, 余竹焕, 高炜, 阎亚雯, 王晓慧, 刘旭亮. 电子封装用纳米复合焊膏的研究进展[J]. 材料导报, 2023, 37(19): 22010113-11.
[2] 张旭, 董海亮, 贾志刚, 张爱琴, 梁建, 许并社. GaAs基大功率半导体激光器的研究进展[J]. 材料导报, 2022, 36(12): 20100023-7.
[3] 韩翠红, 石佳东, 刘云帆, 刘倩, 马国政, 李国禄, 王海斗. 关节轴承自润滑材料摩擦学性能及轴承寿命预测研究现状[J]. 材料导报, 2021, 35(5): 5166-5173.
[4] 刘璇, 徐红艳, 李红, 徐菊, Hodúlová Erika, Kovaříková Ingrid. 应用于功率芯片封装的瞬态液相扩散连接材料与接头可靠性研究进展[J]. 材料导报, 2021, 35(19): 19116-19124.
[5] 袁晓静, 关宁, 侯根良, 陈小虎, 马爽. 高温固体自润滑涂层的制备及可靠性的研究进展[J]. 材料导报, 2020, 34(5): 5061-5067.
[6] 乔宏霞, 彭宽, 陈克凡, 李江川, 朱翔琛. 陶瓷粉再生混凝土冻融破坏可靠性分析[J]. 材料导报, 2020, 34(10): 10035-10040.
[7] 彭成, 梁爽, 黄福祥, 钟明君, 冉小杰. 键合丝键合界面研究进展[J]. 材料导报, 2019, 33(Z2): 501-504.
[8] 王刘珏,薛松柏,刘晗,林尧伟,陈宏能. 电子封装用Au-20Sn钎料研究进展[J]. 材料导报, 2019, 33(15): 2483-2489.
[9] 申琦, 余森, 牛金龙, 汶斌斌, 刘少辉, 于振涛. 植介入用精细金属丝材及其异质材料焊接技术研究进展[J]. 材料导报, 2019, 33(13): 2127-2132.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed